Back to Build/check report for BioC 3.17
ABCDEFG[H]IJKLMNOPQRSTUVWXYZ

This page was generated on 2023-01-29 16:33:53 -0000 (Sun, 29 Jan 2023).

HostnameOSArch (*)R versionInstalled pkgs
kunpeng1Linux (Ubuntu 22.04.1 LTS)aarch64R Under development (unstable) (2023-01-14 r83615) -- "Unsuffered Consequences" 4021
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

CHECK results for HPiP on kunpeng1


To the developers/maintainers of the HPiP package:
- Please allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to
reflect on this report. See How and When does the builder pull? When will my changes propagate? for more information.
- Make sure to use the following settings in order to reproduce any error or warning you see on this page.

raw results

Package 913/2162HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
HPiP 1.5.0  (landing page)
Matineh Rahmatbakhsh
Snapshot Date: 2023-01-27 13:09:27 -0000 (Fri, 27 Jan 2023)
git_url: https://git.bioconductor.org/packages/HPiP
git_branch: master
git_last_commit: 5ea7a66
git_last_commit_date: 2022-11-01 15:25:39 -0000 (Tue, 01 Nov 2022)
kunpeng1Linux (Ubuntu 22.04.1 LTS) / aarch64  OK    OK    WARNINGS  

Summary

Package: HPiP
Version: 1.5.0
Command: /home/biocbuild/bbs-3.17-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.17-bioc/R/library --timings HPiP_1.5.0.tar.gz
StartedAt: 2023-01-29 00:58:47 -0000 (Sun, 29 Jan 2023)
EndedAt: 2023-01-29 01:13:44 -0000 (Sun, 29 Jan 2023)
EllapsedTime: 896.3 seconds
RetCode: 0
Status:   WARNINGS  
CheckDir: HPiP.Rcheck
Warnings: 1

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.17-bioc/R/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/bbs-3.17-bioc/R/library --timings HPiP_1.5.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.17-bioc/meat/HPiP.Rcheck’
* using R Under development (unstable) (2023-01-14 r83615)
* using platform: aarch64-unknown-linux-gnu (64-bit)
* R was compiled by
    gcc (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0
    GNU Fortran (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0
* running under: Ubuntu 22.04.1 LTS
* using session charset: UTF-8
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.5.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... WARNING
Error in library(HPiP, lib.loc = "/home/biocbuild/bbs-3.17-bioc/R/library") : 
  there is no package called ‘HPiP’
Execution halted

It looks like this package has a loading problem when not on .libPaths:
see the messages for details.
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... SKIPPED
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘runTests.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ...
  ‘HPiP_tutorial.Rmd’ using ‘UTF-8’... OK
 NONE
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 WARNING, 1 NOTE
See
  ‘/home/biocbuild/bbs-3.17-bioc/meat/HPiP.Rcheck/00check.log’
for details.



Installation output

HPiP.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.17-bioc/R/bin/R CMD INSTALL HPiP
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.17-bioc/R/site-library’
* installing *source* package ‘HPiP’ ...
** using staged installation
** R
** data
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (HPiP)

Tests output

HPiP.Rcheck/tests/runTests.Rout


R Under development (unstable) (2023-01-14 r83615) -- "Unsuffered Consequences"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1 

# weights:  103
initial  value 98.171410 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 108.896662 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 94.634728 
iter  10 value 90.713958
iter  20 value 84.727326
iter  30 value 84.721023
final  value 84.720834 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.870674 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 94.674077 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 113.280599 
final  value 94.466823 
converged
Fitting Repeat 2 

# weights:  305
initial  value 105.319541 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 111.451643 
iter  10 value 94.406499
final  value 94.354286 
converged
Fitting Repeat 4 

# weights:  305
initial  value 97.667369 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 96.398730 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 124.666506 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  507
initial  value 95.576470 
final  value 94.354286 
converged
Fitting Repeat 3 

# weights:  507
initial  value 112.400731 
iter  10 value 94.484211
iter  10 value 94.484211
iter  10 value 94.484211
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  507
initial  value 99.015452 
iter  10 value 93.811885
iter  20 value 92.785416
iter  30 value 92.770472
final  value 92.770439 
converged
Fitting Repeat 5 

# weights:  507
initial  value 100.882161 
final  value 94.330952 
converged
Fitting Repeat 1 

# weights:  103
initial  value 103.645851 
iter  10 value 94.487388
iter  20 value 94.413899
iter  30 value 90.576080
iter  40 value 88.746224
iter  50 value 88.654741
iter  60 value 88.649272
iter  70 value 88.112215
iter  80 value 86.400309
iter  90 value 84.856875
iter 100 value 84.561463
final  value 84.561463 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 103.600676 
iter  10 value 94.479784
iter  20 value 91.652481
iter  30 value 90.758758
iter  40 value 89.055724
iter  50 value 88.560880
iter  60 value 84.511261
iter  70 value 83.992821
iter  80 value 83.966301
iter  90 value 83.781187
iter 100 value 82.814871
final  value 82.814871 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 98.460641 
iter  10 value 94.402423
iter  20 value 89.675699
iter  30 value 86.466307
iter  40 value 83.792363
iter  50 value 83.495974
iter  60 value 83.429530
final  value 83.429496 
converged
Fitting Repeat 4 

# weights:  103
initial  value 107.700655 
iter  10 value 92.354568
iter  20 value 89.113206
iter  30 value 85.310003
iter  40 value 83.603829
iter  50 value 83.561590
iter  60 value 83.416509
iter  70 value 83.352274
final  value 83.352178 
converged
Fitting Repeat 5 

# weights:  103
initial  value 100.032055 
iter  10 value 95.372470
iter  20 value 94.485980
iter  30 value 94.012868
iter  40 value 89.938626
iter  50 value 86.376689
iter  60 value 84.761574
iter  70 value 83.663011
iter  80 value 82.973347
iter  90 value 82.737088
final  value 82.736613 
converged
Fitting Repeat 1 

# weights:  305
initial  value 103.254624 
iter  10 value 94.551297
iter  20 value 90.230121
iter  30 value 85.481021
iter  40 value 84.059718
iter  50 value 83.545459
iter  60 value 82.818504
iter  70 value 82.402357
iter  80 value 82.117719
iter  90 value 81.991263
iter 100 value 81.966382
final  value 81.966382 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 104.981515 
iter  10 value 94.496651
iter  20 value 89.012667
iter  30 value 87.967905
iter  40 value 86.972058
iter  50 value 86.223041
iter  60 value 85.271004
iter  70 value 84.296087
iter  80 value 83.121797
iter  90 value 82.875945
iter 100 value 82.714146
final  value 82.714146 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 105.495390 
iter  10 value 94.472348
iter  20 value 87.638034
iter  30 value 85.770040
iter  40 value 85.121160
iter  50 value 81.918428
iter  60 value 81.090466
iter  70 value 80.887909
iter  80 value 80.669006
iter  90 value 80.528721
iter 100 value 80.466837
final  value 80.466837 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 116.904695 
iter  10 value 94.603494
iter  20 value 88.338172
iter  30 value 86.352952
iter  40 value 84.785898
iter  50 value 83.777939
iter  60 value 83.722205
iter  70 value 83.658708
iter  80 value 83.631707
iter  90 value 83.539500
iter 100 value 82.936796
final  value 82.936796 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 105.292788 
iter  10 value 93.987763
iter  20 value 87.700662
iter  30 value 85.686308
iter  40 value 85.468251
iter  50 value 84.042356
iter  60 value 83.142092
iter  70 value 82.641747
iter  80 value 82.235132
iter  90 value 82.041807
iter 100 value 82.017411
final  value 82.017411 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 117.507057 
iter  10 value 94.601784
iter  20 value 85.360055
iter  30 value 84.847974
iter  40 value 84.769072
iter  50 value 84.154486
iter  60 value 83.255832
iter  70 value 82.773711
iter  80 value 82.519089
iter  90 value 81.023362
iter 100 value 80.901514
final  value 80.901514 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 123.686203 
iter  10 value 94.249454
iter  20 value 89.534558
iter  30 value 86.894810
iter  40 value 84.740938
iter  50 value 84.531757
iter  60 value 84.492985
iter  70 value 84.389685
iter  80 value 84.185919
iter  90 value 83.729761
iter 100 value 83.424197
final  value 83.424197 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 108.552888 
iter  10 value 95.042102
iter  20 value 91.558019
iter  30 value 88.980536
iter  40 value 85.095185
iter  50 value 83.812326
iter  60 value 82.339551
iter  70 value 81.018156
iter  80 value 80.635539
iter  90 value 80.384471
iter 100 value 80.154891
final  value 80.154891 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 127.278652 
iter  10 value 94.957908
iter  20 value 91.822432
iter  30 value 86.587748
iter  40 value 85.613054
iter  50 value 84.169719
iter  60 value 83.979573
iter  70 value 83.644809
iter  80 value 82.415206
iter  90 value 80.944435
iter 100 value 80.764512
final  value 80.764512 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 136.838071 
iter  10 value 98.029777
iter  20 value 87.248669
iter  30 value 86.087996
iter  40 value 83.716673
iter  50 value 82.354630
iter  60 value 82.080499
iter  70 value 81.685159
iter  80 value 81.326167
iter  90 value 81.154945
iter 100 value 81.027985
final  value 81.027985 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 106.103806 
final  value 94.485800 
converged
Fitting Repeat 2 

# weights:  103
initial  value 98.595895 
final  value 94.468316 
converged
Fitting Repeat 3 

# weights:  103
initial  value 103.929187 
final  value 94.486020 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.097320 
iter  10 value 93.885144
iter  20 value 91.787245
iter  30 value 87.718896
iter  40 value 87.691351
iter  50 value 87.690531
iter  60 value 87.688960
final  value 87.688464 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.835735 
iter  10 value 94.114957
iter  20 value 94.113997
iter  30 value 94.091325
iter  40 value 94.086483
final  value 94.085851 
converged
Fitting Repeat 1 

# weights:  305
initial  value 103.305614 
iter  10 value 94.489386
iter  20 value 94.479805
iter  30 value 94.332597
final  value 94.331396 
converged
Fitting Repeat 2 

# weights:  305
initial  value 99.642035 
iter  10 value 93.893773
iter  20 value 93.700051
iter  30 value 93.648237
iter  40 value 93.578874
iter  50 value 91.447533
iter  60 value 85.013679
iter  70 value 83.171465
iter  80 value 82.907332
iter  90 value 82.471992
iter 100 value 82.442326
final  value 82.442326 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 97.509614 
iter  10 value 94.489413
iter  20 value 94.484234
iter  30 value 93.447410
iter  40 value 85.672293
iter  50 value 83.794672
iter  60 value 83.704544
iter  70 value 83.282597
iter  80 value 83.153578
iter  90 value 83.149938
iter 100 value 83.086887
final  value 83.086887 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 118.170430 
iter  10 value 94.343575
iter  20 value 94.339691
iter  30 value 94.111354
iter  40 value 93.375938
iter  50 value 87.904641
iter  60 value 87.759398
iter  70 value 85.360265
iter  80 value 85.357229
iter  90 value 85.356549
iter 100 value 85.355672
final  value 85.355672 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 96.822093 
iter  10 value 94.488152
iter  20 value 84.549729
iter  30 value 83.886699
iter  40 value 83.857946
iter  50 value 83.857697
iter  60 value 83.067831
iter  70 value 82.883980
iter  80 value 79.722178
iter  90 value 79.224925
iter 100 value 79.099388
final  value 79.099388 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 100.054334 
iter  10 value 94.492273
iter  20 value 94.484311
iter  30 value 94.346590
iter  40 value 92.212853
iter  50 value 91.400996
iter  60 value 90.256828
iter  70 value 90.019054
iter  80 value 89.842709
iter  90 value 89.838692
iter 100 value 89.838094
final  value 89.838094 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 112.762370 
iter  10 value 94.475241
iter  20 value 94.473280
iter  30 value 94.472312
iter  40 value 94.364840
iter  50 value 93.729038
iter  60 value 84.020953
final  value 83.929533 
converged
Fitting Repeat 3 

# weights:  507
initial  value 97.422060 
iter  10 value 94.492865
iter  20 value 94.488013
iter  30 value 94.480930
iter  40 value 94.114898
final  value 94.112889 
converged
Fitting Repeat 4 

# weights:  507
initial  value 111.896203 
iter  10 value 94.474982
iter  20 value 94.337866
iter  30 value 90.928099
iter  40 value 90.919255
iter  50 value 90.581323
iter  60 value 85.985027
iter  70 value 83.655588
iter  80 value 83.516697
iter  90 value 82.959228
iter 100 value 80.361023
final  value 80.361023 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 106.588639 
iter  10 value 94.492684
iter  20 value 94.448707
iter  30 value 87.154134
iter  40 value 84.750336
iter  50 value 84.747208
iter  60 value 84.738690
iter  70 value 84.733095
iter  80 value 83.831150
iter  90 value 83.100722
iter 100 value 83.100111
final  value 83.100111 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 98.527926 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.885317 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 96.928289 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.634479 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 104.344429 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 99.666336 
final  value 94.275362 
converged
Fitting Repeat 2 

# weights:  305
initial  value 103.377674 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  305
initial  value 101.387093 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  305
initial  value 105.717217 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 95.901080 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  507
initial  value 114.561776 
iter  10 value 92.303448
iter  10 value 92.303448
iter  10 value 92.303448
final  value 92.303448 
converged
Fitting Repeat 2 

# weights:  507
initial  value 113.834850 
iter  10 value 93.177560
final  value 93.177238 
converged
Fitting Repeat 3 

# weights:  507
initial  value 101.580425 
iter  10 value 87.764832
iter  20 value 83.273669
iter  30 value 82.810357
iter  40 value 82.615338
iter  50 value 82.608129
final  value 82.607893 
converged
Fitting Repeat 4 

# weights:  507
initial  value 95.252858 
iter  10 value 87.375350
iter  20 value 87.245616
iter  30 value 87.045711
iter  40 value 86.113061
iter  50 value 85.400382
iter  60 value 85.248407
iter  70 value 85.223177
iter  80 value 85.222632
final  value 85.222587 
converged
Fitting Repeat 5 

# weights:  507
initial  value 138.983663 
iter  10 value 94.484211
iter  10 value 94.484211
iter  10 value 94.484211
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 104.301308 
iter  10 value 94.107086
iter  20 value 88.917998
iter  30 value 88.065678
iter  40 value 81.452127
iter  50 value 80.931645
iter  60 value 80.687053
iter  70 value 80.381292
iter  80 value 80.310873
iter  90 value 80.272879
iter 100 value 80.271457
final  value 80.271457 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 96.720861 
iter  10 value 94.488276
iter  20 value 94.296296
iter  30 value 85.223501
iter  40 value 84.327846
iter  50 value 84.167735
iter  60 value 84.062922
iter  70 value 83.821977
iter  80 value 83.810966
final  value 83.810868 
converged
Fitting Repeat 3 

# weights:  103
initial  value 104.210307 
iter  10 value 94.753154
iter  20 value 94.472184
iter  30 value 94.122702
iter  40 value 93.882280
iter  50 value 93.398207
iter  60 value 92.898369
iter  70 value 87.575079
iter  80 value 84.036999
iter  90 value 83.743761
iter 100 value 83.540124
final  value 83.540124 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  103
initial  value 97.530421 
iter  10 value 94.492443
iter  20 value 94.486589
iter  30 value 93.851027
iter  40 value 89.106309
iter  50 value 86.909398
iter  60 value 84.605231
iter  70 value 83.865694
iter  80 value 83.816684
iter  90 value 83.811145
iter 100 value 83.810866
final  value 83.810866 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 99.935948 
iter  10 value 94.450176
iter  20 value 89.215716
iter  30 value 85.359467
iter  40 value 84.150689
iter  50 value 83.953622
iter  60 value 82.197613
iter  70 value 80.761076
iter  80 value 80.407284
iter  90 value 80.271918
final  value 80.271249 
converged
Fitting Repeat 1 

# weights:  305
initial  value 100.438070 
iter  10 value 93.959973
iter  20 value 93.305436
iter  30 value 92.715466
iter  40 value 88.925018
iter  50 value 87.301068
iter  60 value 86.942789
iter  70 value 86.217546
iter  80 value 83.725508
iter  90 value 82.347146
iter 100 value 80.702165
final  value 80.702165 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 110.579847 
iter  10 value 94.767203
iter  20 value 94.207068
iter  30 value 93.430542
iter  40 value 89.290759
iter  50 value 86.878425
iter  60 value 84.547933
iter  70 value 83.077580
iter  80 value 81.416040
iter  90 value 81.264814
iter 100 value 81.195076
final  value 81.195076 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 106.644633 
iter  10 value 94.997139
iter  20 value 93.290249
iter  30 value 93.116940
iter  40 value 86.054798
iter  50 value 83.092182
iter  60 value 80.397490
iter  70 value 79.445264
iter  80 value 79.295073
iter  90 value 79.205015
iter 100 value 79.195231
final  value 79.195231 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 111.823385 
iter  10 value 95.224521
iter  20 value 93.179634
iter  30 value 90.724922
iter  40 value 90.376608
iter  50 value 89.508463
iter  60 value 82.800368
iter  70 value 80.345069
iter  80 value 79.869955
iter  90 value 79.684162
iter 100 value 79.529002
final  value 79.529002 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 111.338919 
iter  10 value 93.622787
iter  20 value 93.362933
iter  30 value 92.570683
iter  40 value 91.457112
iter  50 value 90.428600
iter  60 value 89.375388
iter  70 value 88.875086
iter  80 value 87.943223
iter  90 value 84.006844
iter 100 value 80.492123
final  value 80.492123 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 107.575208 
iter  10 value 88.928392
iter  20 value 86.071232
iter  30 value 85.123314
iter  40 value 82.457778
iter  50 value 81.395294
iter  60 value 81.109314
iter  70 value 80.951609
iter  80 value 80.885135
iter  90 value 80.860108
iter 100 value 80.795329
final  value 80.795329 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 124.585613 
iter  10 value 93.915951
iter  20 value 90.955760
iter  30 value 84.142236
iter  40 value 83.902808
iter  50 value 81.817229
iter  60 value 81.466398
iter  70 value 81.135279
iter  80 value 81.014897
iter  90 value 80.774665
iter 100 value 80.753312
final  value 80.753312 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 106.300486 
iter  10 value 94.613643
iter  20 value 93.354424
iter  30 value 90.919628
iter  40 value 86.284424
iter  50 value 84.411170
iter  60 value 83.808790
iter  70 value 83.589922
iter  80 value 83.004107
iter  90 value 81.704762
iter 100 value 80.899080
final  value 80.899080 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 133.073404 
iter  10 value 94.486689
iter  20 value 93.445600
iter  30 value 88.910694
iter  40 value 84.947267
iter  50 value 82.146250
iter  60 value 80.566385
iter  70 value 80.161974
iter  80 value 79.422255
iter  90 value 79.215275
iter 100 value 79.001646
final  value 79.001646 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 110.560771 
iter  10 value 99.442807
iter  20 value 93.907521
iter  30 value 85.138520
iter  40 value 83.540040
iter  50 value 83.407183
iter  60 value 83.159831
iter  70 value 82.085515
iter  80 value 80.034790
iter  90 value 79.452459
iter 100 value 79.389031
final  value 79.389031 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 100.527506 
iter  10 value 93.397385
iter  20 value 93.396977
iter  30 value 92.675660
iter  40 value 92.211543
iter  50 value 89.193909
iter  60 value 80.688417
iter  70 value 80.448894
iter  80 value 79.656974
iter  90 value 78.794710
iter 100 value 78.694101
final  value 78.694101 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 100.732291 
final  value 94.486030 
converged
Fitting Repeat 3 

# weights:  103
initial  value 101.979833 
final  value 94.485649 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.220633 
iter  10 value 93.397619
iter  20 value 93.397308
iter  30 value 93.395940
iter  30 value 93.395939
iter  30 value 93.395939
final  value 93.395939 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.773670 
final  value 94.485855 
converged
Fitting Repeat 1 

# weights:  305
initial  value 110.816758 
iter  10 value 94.488476
iter  20 value 89.682374
iter  30 value 86.873468
iter  40 value 86.872577
iter  50 value 85.726756
iter  60 value 85.282200
iter  70 value 85.097749
iter  80 value 84.955174
iter  90 value 84.892649
iter 100 value 84.790019
final  value 84.790019 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 103.405852 
iter  10 value 94.489007
iter  20 value 94.484222
iter  30 value 94.077355
iter  40 value 85.692687
iter  50 value 85.679987
iter  60 value 85.003211
iter  70 value 80.170987
iter  80 value 79.894663
iter  90 value 79.869710
iter 100 value 79.863907
final  value 79.863907 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 101.867440 
iter  10 value 94.489003
iter  20 value 91.329166
iter  30 value 91.307555
iter  40 value 91.268752
iter  50 value 91.265234
iter  60 value 91.264951
iter  60 value 91.264950
final  value 91.264950 
converged
Fitting Repeat 4 

# weights:  305
initial  value 100.445867 
iter  10 value 94.489300
iter  20 value 94.484398
iter  20 value 94.484398
iter  20 value 94.484398
final  value 94.484398 
converged
Fitting Repeat 5 

# weights:  305
initial  value 96.131879 
iter  10 value 94.488872
iter  20 value 94.061151
iter  30 value 87.465396
iter  40 value 82.633791
iter  50 value 81.996519
iter  60 value 81.996175
iter  70 value 81.995188
iter  80 value 81.949057
iter  90 value 81.858716
iter 100 value 79.214608
final  value 79.214608 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 102.749385 
iter  10 value 93.185133
iter  20 value 92.919745
iter  30 value 92.915518
iter  40 value 91.444583
iter  50 value 86.172736
iter  60 value 83.598497
iter  70 value 79.752111
iter  80 value 79.021348
iter  90 value 78.878895
final  value 78.878700 
converged
Fitting Repeat 2 

# weights:  507
initial  value 107.861107 
iter  10 value 93.524486
iter  20 value 85.728210
iter  30 value 85.228673
iter  40 value 82.995361
iter  50 value 82.972620
iter  60 value 82.971976
final  value 82.967267 
converged
Fitting Repeat 3 

# weights:  507
initial  value 120.010875 
iter  10 value 94.492739
iter  20 value 94.375877
final  value 93.395671 
converged
Fitting Repeat 4 

# weights:  507
initial  value 94.185148 
iter  10 value 86.543884
iter  20 value 86.512897
iter  30 value 84.961165
iter  40 value 84.959968
iter  50 value 84.328237
iter  60 value 84.192397
iter  70 value 84.179906
iter  80 value 84.162972
iter  90 value 84.153641
iter 100 value 83.738839
final  value 83.738839 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 94.603184 
iter  10 value 93.127381
iter  20 value 93.084422
iter  30 value 92.922879
final  value 92.912025 
converged
Fitting Repeat 1 

# weights:  103
initial  value 99.344721 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.806292 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 95.477109 
final  value 94.052910 
converged
Fitting Repeat 4 

# weights:  103
initial  value 99.754639 
final  value 93.893849 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.653304 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 127.833146 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  305
initial  value 119.615596 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 106.209093 
final  value 94.038251 
converged
Fitting Repeat 4 

# weights:  305
initial  value 104.887298 
final  value 94.038251 
converged
Fitting Repeat 5 

# weights:  305
initial  value 110.715489 
final  value 94.038251 
converged
Fitting Repeat 1 

# weights:  507
initial  value 99.357587 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  507
initial  value 110.220893 
final  value 94.038251 
converged
Fitting Repeat 3 

# weights:  507
initial  value 112.645605 
final  value 94.038251 
converged
Fitting Repeat 4 

# weights:  507
initial  value 129.942829 
final  value 93.800211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 106.826902 
final  value 94.038251 
converged
Fitting Repeat 1 

# weights:  103
initial  value 98.580814 
iter  10 value 93.961955
iter  20 value 85.503988
iter  30 value 83.256281
iter  40 value 82.825245
iter  50 value 82.781383
iter  60 value 82.651804
iter  70 value 79.584986
iter  80 value 79.571837
iter  90 value 79.562435
iter 100 value 79.551039
final  value 79.551039 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 100.285391 
iter  10 value 89.585100
iter  20 value 84.046840
iter  30 value 83.636068
iter  40 value 80.257230
iter  50 value 79.621923
iter  60 value 79.553005
final  value 79.550904 
converged
Fitting Repeat 3 

# weights:  103
initial  value 102.510293 
iter  10 value 93.938772
iter  20 value 92.810670
iter  30 value 91.053999
iter  40 value 81.625485
iter  50 value 81.387316
iter  60 value 81.269103
iter  70 value 80.679749
iter  80 value 80.656198
final  value 80.656192 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.070037 
iter  10 value 94.051620
iter  20 value 80.549323
iter  30 value 80.314305
iter  40 value 80.157326
iter  50 value 79.546851
iter  60 value 79.249726
iter  70 value 79.016045
iter  80 value 79.013323
final  value 79.013038 
converged
Fitting Repeat 5 

# weights:  103
initial  value 96.148242 
iter  10 value 94.006789
iter  20 value 92.594025
iter  30 value 86.317958
iter  40 value 82.811266
iter  50 value 81.644153
iter  60 value 80.783655
iter  70 value 80.256141
iter  80 value 80.131534
final  value 80.130299 
converged
Fitting Repeat 1 

# weights:  305
initial  value 103.297259 
iter  10 value 94.214043
iter  20 value 94.040532
iter  30 value 82.474788
iter  40 value 79.085835
iter  50 value 76.688618
iter  60 value 76.303668
iter  70 value 75.486092
iter  80 value 75.156005
iter  90 value 74.935145
iter 100 value 74.905080
final  value 74.905080 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 115.921055 
iter  10 value 94.048464
iter  20 value 92.584010
iter  30 value 89.593079
iter  40 value 89.012390
iter  50 value 87.333515
iter  60 value 79.619294
iter  70 value 78.374505
iter  80 value 77.908341
iter  90 value 77.499499
iter 100 value 76.864226
final  value 76.864226 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 100.845873 
iter  10 value 94.067422
iter  20 value 92.176445
iter  30 value 84.722844
iter  40 value 81.791253
iter  50 value 81.216719
iter  60 value 81.069053
iter  70 value 80.583963
iter  80 value 79.616050
iter  90 value 77.597999
iter 100 value 76.534617
final  value 76.534617 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 99.872933 
iter  10 value 94.071898
iter  20 value 93.770835
iter  30 value 85.816009
iter  40 value 84.889412
iter  50 value 80.911489
iter  60 value 79.036315
iter  70 value 76.063050
iter  80 value 75.966683
iter  90 value 75.947590
iter 100 value 75.934865
final  value 75.934865 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 109.890521 
iter  10 value 92.204599
iter  20 value 87.759912
iter  30 value 79.760720
iter  40 value 78.383744
iter  50 value 77.519211
iter  60 value 77.024872
iter  70 value 76.578019
iter  80 value 76.461318
iter  90 value 76.442346
iter 100 value 76.433782
final  value 76.433782 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 108.399817 
iter  10 value 95.263021
iter  20 value 87.983083
iter  30 value 80.412402
iter  40 value 78.464491
iter  50 value 77.610870
iter  60 value 76.810579
iter  70 value 75.641256
iter  80 value 74.849478
iter  90 value 74.586083
iter 100 value 74.575700
final  value 74.575700 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 129.762473 
iter  10 value 93.159907
iter  20 value 81.189053
iter  30 value 80.354486
iter  40 value 77.721537
iter  50 value 76.660546
iter  60 value 75.401575
iter  70 value 74.887740
iter  80 value 74.669876
iter  90 value 74.588195
iter 100 value 74.512937
final  value 74.512937 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 129.539815 
iter  10 value 93.904524
iter  20 value 82.678742
iter  30 value 80.723682
iter  40 value 78.635875
iter  50 value 77.507135
iter  60 value 75.899336
iter  70 value 75.115021
iter  80 value 74.939555
iter  90 value 74.836122
iter 100 value 74.768798
final  value 74.768798 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 112.020846 
iter  10 value 94.414606
iter  20 value 89.269925
iter  30 value 84.096166
iter  40 value 81.609531
iter  50 value 80.472396
iter  60 value 78.763800
iter  70 value 77.851871
iter  80 value 77.432154
iter  90 value 76.517279
iter 100 value 75.870983
final  value 75.870983 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 115.387370 
iter  10 value 94.289620
iter  20 value 93.624100
iter  30 value 81.587742
iter  40 value 80.177145
iter  50 value 79.694943
iter  60 value 77.692881
iter  70 value 77.042331
iter  80 value 76.282420
iter  90 value 75.844234
iter 100 value 75.339640
final  value 75.339640 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 94.383949 
final  value 94.054640 
converged
Fitting Repeat 2 

# weights:  103
initial  value 97.181188 
final  value 94.054574 
converged
Fitting Repeat 3 

# weights:  103
initial  value 110.907780 
iter  10 value 94.054417
iter  20 value 90.633699
iter  30 value 78.109401
iter  40 value 78.018052
iter  50 value 78.017697
final  value 78.017659 
converged
Fitting Repeat 4 

# weights:  103
initial  value 101.238601 
final  value 94.054576 
converged
Fitting Repeat 5 

# weights:  103
initial  value 95.713946 
final  value 94.054499 
converged
Fitting Repeat 1 

# weights:  305
initial  value 100.630651 
iter  10 value 93.676502
iter  20 value 93.671581
iter  30 value 86.428850
iter  40 value 82.380667
iter  50 value 82.002675
iter  60 value 81.329243
iter  70 value 76.316446
iter  80 value 75.510249
iter  90 value 75.366810
iter 100 value 75.085448
final  value 75.085448 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 95.369153 
iter  10 value 94.057679
iter  20 value 94.034711
iter  30 value 92.599126
iter  40 value 90.793521
iter  50 value 90.784495
iter  60 value 90.772217
iter  70 value 90.768690
final  value 90.768480 
converged
Fitting Repeat 3 

# weights:  305
initial  value 95.928049 
iter  10 value 90.852383
iter  20 value 90.659813
iter  30 value 90.657791
iter  40 value 89.217421
iter  50 value 89.208810
iter  60 value 88.492444
iter  70 value 88.488658
final  value 88.488618 
converged
Fitting Repeat 4 

# weights:  305
initial  value 100.870002 
iter  10 value 92.236253
iter  20 value 91.278368
iter  30 value 91.264611
iter  40 value 90.885713
iter  50 value 90.854531
iter  60 value 90.852773
iter  70 value 90.851957
iter  80 value 90.677618
final  value 90.671818 
converged
Fitting Repeat 5 

# weights:  305
initial  value 100.382711 
iter  10 value 94.043328
iter  20 value 94.040996
iter  30 value 94.039904
iter  40 value 94.038877
iter  50 value 93.976961
iter  60 value 92.807016
iter  70 value 92.802428
iter  80 value 91.260961
iter  80 value 91.260961
iter  80 value 91.260961
final  value 91.260961 
converged
Fitting Repeat 1 

# weights:  507
initial  value 118.810291 
iter  10 value 94.046580
iter  20 value 94.017930
iter  30 value 90.470139
iter  40 value 80.954114
iter  50 value 80.874514
iter  60 value 80.541625
iter  70 value 80.498888
iter  80 value 80.445051
iter  90 value 77.376813
iter 100 value 77.092883
final  value 77.092883 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 102.280284 
iter  10 value 94.061185
iter  20 value 90.133198
iter  30 value 89.271030
iter  40 value 89.256033
iter  50 value 77.736190
iter  60 value 77.386007
iter  60 value 77.386007
final  value 77.386007 
converged
Fitting Repeat 3 

# weights:  507
initial  value 126.520733 
iter  10 value 93.657636
iter  20 value 92.125532
iter  30 value 91.994529
final  value 91.994222 
converged
Fitting Repeat 4 

# weights:  507
initial  value 98.067474 
iter  10 value 90.744288
iter  20 value 89.696568
iter  30 value 89.127143
iter  40 value 89.125219
iter  50 value 88.324647
iter  60 value 88.319690
iter  70 value 87.390974
iter  80 value 75.812380
iter  90 value 75.533910
iter 100 value 75.516189
final  value 75.516189 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 99.513085 
iter  10 value 94.017178
iter  20 value 94.009410
iter  30 value 94.009257
final  value 94.009187 
converged
Fitting Repeat 1 

# weights:  103
initial  value 96.246087 
final  value 94.052910 
converged
Fitting Repeat 2 

# weights:  103
initial  value 104.280891 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.813795 
iter  10 value 86.811731
iter  20 value 85.045132
iter  30 value 85.012463
final  value 85.012407 
converged
Fitting Repeat 4 

# weights:  103
initial  value 95.987232 
final  value 94.052910 
converged
Fitting Repeat 5 

# weights:  103
initial  value 98.109060 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  305
initial  value 95.196742 
final  value 93.307576 
converged
Fitting Repeat 2 

# weights:  305
initial  value 102.581638 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  305
initial  value 99.131403 
iter  10 value 87.290282
iter  20 value 86.200291
final  value 86.200000 
converged
Fitting Repeat 4 

# weights:  305
initial  value 101.858601 
iter  10 value 92.525607
iter  20 value 92.475600
final  value 92.475526 
converged
Fitting Repeat 5 

# weights:  305
initial  value 101.045644 
final  value 94.052910 
converged
Fitting Repeat 1 

# weights:  507
initial  value 96.566067 
iter  10 value 90.930759
iter  20 value 90.653659
iter  30 value 90.583435
iter  40 value 90.582489
iter  50 value 90.579566
final  value 90.579322 
converged
Fitting Repeat 2 

# weights:  507
initial  value 105.793923 
final  value 94.052910 
converged
Fitting Repeat 3 

# weights:  507
initial  value 109.172107 
final  value 94.008696 
converged
Fitting Repeat 4 

# weights:  507
initial  value 104.967057 
final  value 94.008696 
converged
Fitting Repeat 5 

# weights:  507
initial  value 112.765605 
final  value 93.551913 
converged
Fitting Repeat 1 

# weights:  103
initial  value 95.919831 
iter  10 value 93.985147
iter  20 value 84.577025
iter  30 value 84.209289
iter  40 value 83.921331
iter  50 value 83.533480
iter  60 value 83.343973
iter  70 value 83.128496
iter  80 value 83.067156
iter  90 value 83.012663
iter 100 value 82.927557
final  value 82.927557 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 102.400058 
iter  10 value 93.796422
iter  20 value 84.522237
iter  30 value 83.971493
iter  40 value 83.717792
iter  50 value 83.423881
iter  60 value 83.206568
iter  70 value 83.181838
iter  80 value 83.164321
final  value 83.164320 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.519656 
iter  10 value 94.643050
iter  20 value 94.056902
iter  30 value 93.326931
iter  40 value 91.796090
iter  50 value 91.627443
iter  60 value 91.620496
final  value 91.620494 
converged
Fitting Repeat 4 

# weights:  103
initial  value 104.110946 
iter  10 value 88.841602
iter  20 value 84.230446
iter  30 value 83.345706
iter  40 value 83.062539
iter  50 value 82.911600
iter  60 value 82.822927
iter  70 value 82.662909
iter  80 value 82.588154
final  value 82.547661 
converged
Fitting Repeat 5 

# weights:  103
initial  value 107.059477 
iter  10 value 93.932432
iter  20 value 85.837907
iter  30 value 85.419997
iter  40 value 85.085448
iter  50 value 85.039902
final  value 85.036132 
converged
Fitting Repeat 1 

# weights:  305
initial  value 105.094198 
iter  10 value 94.064671
iter  20 value 89.320718
iter  30 value 87.433414
iter  40 value 86.187225
iter  50 value 83.877606
iter  60 value 83.324753
iter  70 value 82.875668
iter  80 value 82.576709
iter  90 value 82.159374
iter 100 value 81.939623
final  value 81.939623 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 101.290081 
iter  10 value 89.018936
iter  20 value 83.513656
iter  30 value 82.759248
iter  40 value 82.209956
iter  50 value 81.988034
iter  60 value 81.718542
iter  70 value 81.546505
iter  80 value 81.441652
iter  90 value 81.325546
iter 100 value 81.271774
final  value 81.271774 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 112.596797 
iter  10 value 93.885067
iter  20 value 89.280570
iter  30 value 87.012194
iter  40 value 83.431053
iter  50 value 82.592470
iter  60 value 82.173779
iter  70 value 82.150117
iter  80 value 82.113413
iter  90 value 81.973119
iter 100 value 81.335515
final  value 81.335515 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 104.071789 
iter  10 value 91.894232
iter  20 value 86.251003
iter  30 value 84.416000
iter  40 value 84.029961
iter  50 value 84.009661
iter  60 value 83.978951
iter  70 value 83.390970
iter  80 value 82.794889
iter  90 value 82.238161
iter 100 value 82.154271
final  value 82.154271 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 100.064390 
iter  10 value 87.201394
iter  20 value 86.008760
iter  30 value 85.270077
iter  40 value 84.036448
iter  50 value 83.458806
iter  60 value 83.315864
iter  70 value 83.082036
iter  80 value 83.019631
iter  90 value 82.839585
iter 100 value 82.317116
final  value 82.317116 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 111.915302 
iter  10 value 97.415517
iter  20 value 92.635318
iter  30 value 91.358842
iter  40 value 89.147302
iter  50 value 83.943066
iter  60 value 83.275863
iter  70 value 82.122479
iter  80 value 81.997950
iter  90 value 81.909331
iter 100 value 81.889433
final  value 81.889433 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 106.770262 
iter  10 value 94.158577
iter  20 value 84.393135
iter  30 value 84.112779
iter  40 value 83.771620
iter  50 value 83.735631
iter  60 value 83.537723
iter  70 value 82.211489
iter  80 value 82.065230
iter  90 value 81.763724
iter 100 value 81.510279
final  value 81.510279 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 106.859726 
iter  10 value 94.314083
iter  20 value 92.064086
iter  30 value 86.379525
iter  40 value 85.544603
iter  50 value 83.949478
iter  60 value 83.461565
iter  70 value 83.240497
iter  80 value 82.987740
iter  90 value 82.037379
iter 100 value 81.412920
final  value 81.412920 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 105.722736 
iter  10 value 93.275427
iter  20 value 85.356669
iter  30 value 84.011658
iter  40 value 83.022797
iter  50 value 81.690535
iter  60 value 81.534857
iter  70 value 81.285588
iter  80 value 81.056641
iter  90 value 80.943764
iter 100 value 80.928022
final  value 80.928022 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 120.565855 
iter  10 value 93.769653
iter  20 value 87.934635
iter  30 value 86.087600
iter  40 value 85.268574
iter  50 value 84.621659
iter  60 value 83.892746
iter  70 value 83.242119
iter  80 value 81.882810
iter  90 value 81.378149
iter 100 value 81.189470
final  value 81.189470 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 101.057884 
iter  10 value 94.054465
iter  20 value 93.220109
iter  30 value 91.434704
iter  40 value 91.434365
iter  50 value 91.433903
iter  60 value 91.433736
iter  70 value 91.432564
final  value 91.432535 
converged
Fitting Repeat 2 

# weights:  103
initial  value 100.325595 
final  value 93.553567 
converged
Fitting Repeat 3 

# weights:  103
initial  value 105.341025 
iter  10 value 94.014807
final  value 94.010236 
converged
Fitting Repeat 4 

# weights:  103
initial  value 106.869417 
final  value 94.054362 
converged
Fitting Repeat 5 

# weights:  103
initial  value 107.097725 
iter  10 value 94.054520
iter  20 value 94.052931
iter  30 value 92.392248
iter  40 value 86.480407
iter  50 value 86.466319
iter  60 value 86.386692
iter  70 value 84.870679
iter  80 value 84.532472
iter  90 value 84.529024
iter 100 value 84.528501
final  value 84.528501 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 103.776140 
iter  10 value 94.057521
iter  20 value 93.117224
iter  30 value 92.478599
iter  40 value 91.928600
iter  50 value 91.926770
iter  50 value 91.926769
final  value 91.926765 
converged
Fitting Repeat 2 

# weights:  305
initial  value 94.977582 
iter  10 value 94.057546
iter  20 value 94.029395
iter  30 value 85.486363
iter  40 value 83.908980
iter  50 value 83.473162
iter  60 value 83.132104
iter  70 value 82.915896
iter  80 value 82.868055
iter  90 value 82.866592
iter 100 value 82.865938
final  value 82.865938 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 109.044124 
iter  10 value 94.013402
iter  20 value 93.958303
iter  30 value 85.898054
iter  40 value 85.881816
iter  50 value 84.823398
iter  60 value 83.122302
iter  70 value 82.140493
iter  80 value 82.124178
iter  90 value 82.123607
iter 100 value 82.122490
final  value 82.122490 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 110.827600 
iter  10 value 94.057022
iter  20 value 94.006465
iter  30 value 89.980786
iter  40 value 89.919741
iter  50 value 89.919422
final  value 89.919419 
converged
Fitting Repeat 5 

# weights:  305
initial  value 99.557257 
iter  10 value 94.057853
final  value 94.053420 
converged
Fitting Repeat 1 

# weights:  507
initial  value 120.736304 
iter  10 value 94.069713
iter  20 value 94.060702
iter  30 value 91.955238
iter  40 value 91.617888
iter  50 value 90.095229
iter  60 value 82.903294
iter  70 value 80.878125
iter  80 value 80.030400
iter  90 value 79.991806
iter 100 value 79.990965
final  value 79.990965 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 96.451822 
iter  10 value 92.798686
iter  20 value 88.921359
iter  30 value 88.792262
iter  40 value 88.777578
iter  50 value 84.697809
iter  60 value 82.573358
iter  70 value 81.938405
iter  80 value 81.254991
iter  90 value 80.912426
iter 100 value 80.888502
final  value 80.888502 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 103.667728 
iter  10 value 93.279314
iter  20 value 93.272671
iter  30 value 93.248238
iter  40 value 85.879058
iter  50 value 84.928208
iter  60 value 84.337315
iter  70 value 84.293368
iter  80 value 84.284655
iter  90 value 84.265725
iter 100 value 84.265627
final  value 84.265627 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 97.149288 
iter  10 value 94.060379
iter  20 value 92.191496
iter  30 value 86.822266
iter  40 value 86.494111
iter  50 value 85.240365
iter  60 value 82.593601
iter  70 value 82.255840
iter  80 value 82.252260
final  value 82.252060 
converged
Fitting Repeat 5 

# weights:  507
initial  value 104.869061 
iter  10 value 94.060828
iter  20 value 94.023476
iter  30 value 87.641923
iter  40 value 87.164836
iter  50 value 85.826418
final  value 85.534863 
converged
Fitting Repeat 1 

# weights:  103
initial  value 96.807880 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  103
initial  value 101.911390 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  103
initial  value 97.174322 
final  value 94.484211 
converged
Fitting Repeat 4 

# weights:  103
initial  value 97.123270 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.993834 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  305
initial  value 123.360471 
final  value 94.484211 
converged
Fitting Repeat 2 

# weights:  305
initial  value 106.934980 
iter  10 value 94.360048
final  value 94.354396 
converged
Fitting Repeat 3 

# weights:  305
initial  value 98.702431 
final  value 94.354396 
converged
Fitting Repeat 4 

# weights:  305
initial  value 108.646752 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  305
initial  value 109.632165 
iter  10 value 94.448052
iter  10 value 94.448052
iter  10 value 94.448052
final  value 94.448052 
converged
Fitting Repeat 1 

# weights:  507
initial  value 99.927794 
iter  10 value 91.526569
iter  20 value 91.472587
iter  30 value 87.900565
iter  40 value 82.653953
iter  50 value 82.639859
iter  60 value 82.636518
final  value 82.636510 
converged
Fitting Repeat 2 

# weights:  507
initial  value 107.029625 
final  value 94.484211 
converged
Fitting Repeat 3 

# weights:  507
initial  value 100.155068 
final  value 94.354396 
converged
Fitting Repeat 4 

# weights:  507
initial  value 116.042789 
final  value 94.484211 
converged
Fitting Repeat 5 

# weights:  507
initial  value 109.507772 
final  value 94.484211 
converged
Fitting Repeat 1 

# weights:  103
initial  value 96.880678 
iter  10 value 94.484408
iter  20 value 94.248217
iter  30 value 88.475483
iter  40 value 88.236379
iter  50 value 84.994045
iter  60 value 84.379382
iter  70 value 84.323637
iter  80 value 84.318805
iter  90 value 84.295809
iter 100 value 84.284852
final  value 84.284852 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  103
initial  value 98.563736 
iter  10 value 94.174237
iter  20 value 92.756991
iter  30 value 88.614721
iter  40 value 88.127600
iter  50 value 87.258146
iter  60 value 87.084967
iter  70 value 87.076344
iter  80 value 84.620879
iter  90 value 84.444100
iter 100 value 84.435616
final  value 84.435616 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  103
initial  value 98.969491 
iter  10 value 93.664836
iter  20 value 89.390375
iter  30 value 88.101304
iter  40 value 86.083129
iter  50 value 85.851795
iter  60 value 85.796969
final  value 85.792440 
converged
Fitting Repeat 4 

# weights:  103
initial  value 100.779774 
iter  10 value 94.466389
iter  20 value 94.386964
iter  30 value 94.170745
iter  40 value 93.468657
iter  50 value 88.464454
iter  60 value 86.934647
iter  70 value 86.692511
iter  80 value 86.676544
iter  90 value 86.277999
iter 100 value 86.105579
final  value 86.105579 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  103
initial  value 97.025201 
iter  10 value 94.443689
iter  20 value 88.579229
iter  30 value 85.099693
iter  40 value 83.561564
iter  50 value 83.442749
iter  60 value 83.385164
iter  70 value 82.431921
iter  80 value 81.702092
iter  90 value 81.643469
iter 100 value 81.641504
final  value 81.641504 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  305
initial  value 101.169184 
iter  10 value 94.545667
iter  20 value 94.142274
iter  30 value 94.022915
iter  40 value 93.981041
iter  50 value 91.364226
iter  60 value 84.637227
iter  70 value 84.065653
iter  80 value 82.908971
iter  90 value 82.488786
iter 100 value 81.829632
final  value 81.829632 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 107.409182 
iter  10 value 94.428914
iter  20 value 87.176394
iter  30 value 85.807794
iter  40 value 85.068932
iter  50 value 84.774452
iter  60 value 84.214727
iter  70 value 84.094406
iter  80 value 83.556780
iter  90 value 82.258817
iter 100 value 81.285401
final  value 81.285401 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  305
initial  value 100.031781 
iter  10 value 94.573493
iter  20 value 94.468781
iter  30 value 91.327720
iter  40 value 86.774038
iter  50 value 84.781399
iter  60 value 82.439322
iter  70 value 81.567131
iter  80 value 81.428712
iter  90 value 81.099538
iter 100 value 80.836403
final  value 80.836403 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 108.992832 
iter  10 value 89.398025
iter  20 value 84.806322
iter  30 value 84.019088
iter  40 value 83.880589
iter  50 value 83.854378
iter  60 value 83.679933
iter  70 value 82.665784
iter  80 value 82.072604
iter  90 value 81.082702
iter 100 value 80.675684
final  value 80.675684 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 113.350175 
iter  10 value 94.430748
iter  20 value 91.586309
iter  30 value 89.035430
iter  40 value 86.750801
iter  50 value 85.135961
iter  60 value 83.519736
iter  70 value 82.185547
iter  80 value 81.552137
iter  90 value 81.286037
iter 100 value 80.698727
final  value 80.698727 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  507
initial  value 108.353211 
iter  10 value 95.226380
iter  20 value 94.467339
iter  30 value 91.384650
iter  40 value 86.546494
iter  50 value 85.326094
iter  60 value 83.601136
iter  70 value 82.005346
iter  80 value 81.462472
iter  90 value 81.215388
iter 100 value 81.186568
final  value 81.186568 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  507
initial  value 102.800894 
iter  10 value 89.786833
iter  20 value 87.989106
iter  30 value 85.061324
iter  40 value 84.742657
iter  50 value 83.904794
iter  60 value 83.857960
iter  70 value 83.746109
iter  80 value 82.835871
iter  90 value 80.993290
iter 100 value 80.606429
final  value 80.606429 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 131.415647 
iter  10 value 95.306677
iter  20 value 88.671385
iter  30 value 85.420063
iter  40 value 82.742244
iter  50 value 81.434216
iter  60 value 81.225547
iter  70 value 80.836792
iter  80 value 80.635094
iter  90 value 80.601363
iter 100 value 80.557076
final  value 80.557076 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 110.105866 
iter  10 value 94.491297
iter  20 value 94.118526
iter  30 value 92.749154
iter  40 value 91.900081
iter  50 value 91.062934
iter  60 value 86.779134
iter  70 value 84.497587
iter  80 value 83.260348
iter  90 value 82.477565
iter 100 value 82.114022
final  value 82.114022 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 113.325667 
iter  10 value 94.470334
iter  20 value 90.518445
iter  30 value 88.077990
iter  40 value 83.559831
iter  50 value 82.704181
iter  60 value 81.797369
iter  70 value 81.433101
iter  80 value 81.169071
iter  90 value 80.700489
iter 100 value 80.333558
final  value 80.333558 
stopped after 100 iterations
Fitting Repeat 1 

# weights:  103
initial  value 103.872531 
final  value 94.356026 
converged
Fitting Repeat 2 

# weights:  103
initial  value 95.189459 
iter  10 value 94.485617
iter  20 value 94.484220
iter  20 value 94.484220
iter  20 value 94.484220
final  value 94.484220 
converged
Fitting Repeat 3 

# weights:  103
initial  value 98.246447 
final  value 94.485860 
converged
Fitting Repeat 4 

# weights:  103
initial  value 101.616336 
final  value 94.485841 
converged
Fitting Repeat 5 

# weights:  103
initial  value 99.440592 
iter  10 value 94.485843
iter  20 value 94.484218
iter  20 value 94.484217
iter  20 value 94.484217
final  value 94.484217 
converged
Fitting Repeat 1 

# weights:  305
initial  value 128.230656 
iter  10 value 94.489082
iter  20 value 94.484597
iter  30 value 94.027104
iter  40 value 91.977915
iter  50 value 91.963928
iter  60 value 91.550530
iter  70 value 91.549740
iter  80 value 88.700789
iter  90 value 87.689499
iter 100 value 87.686131
final  value 87.686131 
stopped after 100 iterations
Fitting Repeat 2 

# weights:  305
initial  value 101.876364 
iter  10 value 94.490734
iter  20 value 94.485528
final  value 94.485499 
converged
Fitting Repeat 3 

# weights:  305
initial  value 113.200924 
iter  10 value 94.489057
iter  20 value 94.407876
iter  30 value 94.105264
iter  40 value 93.995574
iter  50 value 92.997866
iter  60 value 90.112679
iter  70 value 89.967992
iter  80 value 89.966496
iter  90 value 89.961690
iter 100 value 89.925489
final  value 89.925489 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  305
initial  value 99.516234 
iter  10 value 94.489174
iter  20 value 94.448084
iter  30 value 88.286862
iter  40 value 88.215886
iter  50 value 88.213903
iter  50 value 88.213903
iter  50 value 88.213903
final  value 88.213903 
converged
Fitting Repeat 5 

# weights:  305
initial  value 106.946361 
iter  10 value 94.498240
iter  20 value 94.374756
iter  30 value 85.944597
iter  40 value 85.182321
iter  50 value 85.176093
iter  60 value 85.173978
iter  70 value 85.171700
iter  80 value 85.168873
final  value 85.168852 
converged
Fitting Repeat 1 

# weights:  507
initial  value 97.188122 
iter  10 value 94.361902
iter  20 value 94.250252
iter  30 value 92.131196
iter  40 value 91.940809
iter  50 value 91.940534
final  value 91.940532 
converged
Fitting Repeat 2 

# weights:  507
initial  value 96.338510 
iter  10 value 94.055165
iter  20 value 94.048496
iter  30 value 94.048310
iter  40 value 94.003354
iter  50 value 93.737488
iter  60 value 89.813249
iter  70 value 82.997367
iter  80 value 81.640107
iter  90 value 80.425366
iter 100 value 80.042061
final  value 80.042061 
stopped after 100 iterations
Fitting Repeat 3 

# weights:  507
initial  value 102.202812 
iter  10 value 94.489901
iter  20 value 93.563698
iter  30 value 85.124203
iter  40 value 85.109663
iter  50 value 85.105570
iter  60 value 85.075694
iter  70 value 84.538338
iter  80 value 83.672595
iter  90 value 83.670245
iter 100 value 83.669576
final  value 83.669576 
stopped after 100 iterations
Fitting Repeat 4 

# weights:  507
initial  value 110.950160 
iter  10 value 94.057619
iter  20 value 94.004081
iter  30 value 94.002992
iter  40 value 94.000563
iter  50 value 93.997024
iter  60 value 93.995493
iter  70 value 93.568199
iter  80 value 91.069288
iter  90 value 90.688439
iter 100 value 90.676289
final  value 90.676289 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  507
initial  value 96.886580 
iter  10 value 94.055790
iter  20 value 94.052884
iter  30 value 93.985918
final  value 93.937102 
converged
Fitting Repeat 1 

# weights:  305
initial  value 151.596365 
iter  10 value 117.896000
iter  20 value 117.891532
iter  30 value 113.385712
iter  40 value 111.879796
iter  50 value 111.879603
iter  60 value 111.877879
iter  70 value 111.866108
iter  80 value 108.917587
final  value 108.915095 
converged
Fitting Repeat 2 

# weights:  305
initial  value 123.716264 
iter  10 value 117.895606
iter  20 value 117.855275
iter  30 value 117.530038
iter  40 value 116.570212
iter  50 value 114.921494
iter  60 value 114.736295
final  value 114.735115 
converged
Fitting Repeat 3 

# weights:  305
initial  value 118.715819 
iter  10 value 117.842488
iter  20 value 107.004245
final  value 107.004242 
converged
Fitting Repeat 4 

# weights:  305
initial  value 137.026370 
iter  10 value 117.465116
iter  20 value 117.211189
iter  30 value 117.206788
iter  40 value 110.713769
iter  50 value 110.263499
iter  60 value 110.110932
iter  70 value 107.769462
iter  80 value 107.764648
iter  90 value 107.764334
iter 100 value 106.156052
final  value 106.156052 
stopped after 100 iterations
Fitting Repeat 5 

# weights:  305
initial  value 122.549741 
iter  10 value 111.229519
iter  20 value 107.987421
iter  30 value 107.984503
iter  40 value 107.981899
iter  50 value 105.872222
iter  60 value 105.286802
iter  70 value 105.282501
iter  80 value 105.271628
final  value 105.266151 
converged
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases


RUNIT TEST PROTOCOL -- Sun Jan 29 01:01:58 2023 
*********************************************** 
Number of test functions: 8 
Number of errors: 0 
Number of failures: 0 

 
1 Test Suite : 
HPiP RUnit Tests - 8 test functions, 0 errors, 0 failures
Number of test functions: 8 
Number of errors: 0 
Number of failures: 0 
Warning messages:
1: The `.data` argument of `add_column()` must have unique names as of tibble
3.0.0.
ℹ Use `.name_repair = "minimal"`.
ℹ The deprecated feature was likely used in the tibble package.
  Please report the issue at <https://github.com/tidyverse/tibble/issues>. 
2: `repeats` has no meaning for this resampling method. 
3: executing %dopar% sequentially: no parallel backend registered 
> 
> 
> 
> 
> proc.time()
   user  system elapsed 
 53.410   0.867  97.491 

Example timings