Back to Build/check report for BioC 3.18:   simplified   long
ABCDEFGHIJKLMNOPQR[S]TUVWXYZ

This page was generated on 2023-05-10 10:04:41 -0000 (Wed, 10 May 2023).

HostnameOSArch (*)R versionInstalled pkgs
kunpeng1Linux (Ubuntu 22.04.1 LTS)aarch64R Under development (unstable) (2023-03-12 r83975) -- "Unsuffered Consequences" 6211
Click on any hostname to see more info about the system (e.g. compilers)      (*) as reported by 'uname -p', except on Windows and Mac OS X

CHECK results for singleCellTK on kunpeng1


To the developers/maintainers of the singleCellTK package:
- Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/singleCellTK.git to reflect on this report. See Troubleshooting Build Report for more information.

- Use the following Renviron settings to reproduce errors and warnings.

Note: If "R CMD check" recently failed on the Linux builder over a missing dependency, add the missing dependency to "Suggests" in your DESCRIPTION file. See the Renviron.bioc for details.

raw results

Package 1901/2194HostnameOS / ArchINSTALLBUILDCHECKBUILD BIN
singleCellTK 2.11.0  (landing page)
Yichen Wang
Snapshot Date: 2023-05-08 19:11:19 -0000 (Mon, 08 May 2023)
git_url: https://git.bioconductor.org/packages/singleCellTK
git_branch: devel
git_last_commit: bce567d
git_last_commit_date: 2023-04-25 15:01:21 -0000 (Tue, 25 Apr 2023)
kunpeng1Linux (Ubuntu 22.04.1 LTS) / aarch64  OK    OK    OK  

Summary

Package: singleCellTK
Version: 2.11.0
Command: /home/biocbuild/bbs-3.17-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.17-bioc/R/site-library --timings singleCellTK_2.11.0.tar.gz
StartedAt: 2023-05-10 05:03:04 -0000 (Wed, 10 May 2023)
EndedAt: 2023-05-10 05:21:33 -0000 (Wed, 10 May 2023)
EllapsedTime: 1108.4 seconds
RetCode: 0
Status:   OK  
CheckDir: singleCellTK.Rcheck
Warnings: 0

Command output

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.17-bioc/R/bin/R CMD check --install=check:singleCellTK.install-out.txt --library=/home/biocbuild/bbs-3.17-bioc/R/site-library --timings singleCellTK_2.11.0.tar.gz
###
##############################################################################
##############################################################################


* using log directory ‘/home/biocbuild/bbs-3.17-bioc/meat/singleCellTK.Rcheck’
* using R Under development (unstable) (2023-03-12 r83975)
* using platform: aarch64-unknown-linux-gnu (64-bit)
* R was compiled by
    gcc (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0
    GNU Fortran (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0
* running under: Ubuntu 22.04.2 LTS
* using session charset: UTF-8
* checking for file ‘singleCellTK/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘singleCellTK’ version ‘2.11.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘singleCellTK’ can be installed ... OK
* checking installed package size ... NOTE
  installed size is  6.8Mb
  sub-directories of 1Mb or more:
    extdata   1.6Mb
    shiny     2.9Mb
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking startup messages can be suppressed ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... OK
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
                           user system elapsed
plotDoubletFinderResults 30.381  0.620  30.998
runScDblFinder           30.161  0.791  30.953
plotScDblFinderResults   29.705  0.632  30.334
importExampleData        23.073  1.340  30.831
runDoubletFinder         22.647  0.052  22.701
plotBatchCorrCompare     13.494  0.212  13.697
plotScdsHybridResults    12.053  0.160  11.107
plotBcdsResults          10.776  0.235   9.880
plotDecontXResults        9.803  0.356  10.162
plotCxdsResults           8.137  0.312   8.446
runDecontX                8.291  0.132   8.424
plotUMAP                  8.179  0.084   8.259
runUMAP                   7.997  0.176   8.170
plotTSCANClusterDEG       7.382  0.088   7.471
runFindMarker             6.357  0.496   6.853
detectCellOutlier         6.634  0.148   6.783
plotFindMarkerHeatmap     6.556  0.100   6.656
plotDEGViolin             6.205  0.264   6.469
plotEmptyDropsResults     5.864  0.028   5.894
plotEmptyDropsScatter     5.701  0.072   5.773
plotDEGRegression         5.275  0.324   5.599
runEmptyDrops             5.286  0.008   5.295
getEnrichRResult          0.504  0.032   7.799
runEnrichR                0.484  0.020   9.986
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
  Running ‘spelling.R’
  Running ‘testthat.R’
 OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ...
  ‘singleCellTK.Rmd’ using ‘UTF-8’... OK
 NONE
* checking re-building of vignette outputs ... OK
* checking PDF version of manual ... OK
* DONE

Status: 1 NOTE
See
  ‘/home/biocbuild/bbs-3.17-bioc/meat/singleCellTK.Rcheck/00check.log’
for details.



Installation output

singleCellTK.Rcheck/00install.out

##############################################################################
##############################################################################
###
### Running command:
###
###   /home/biocbuild/bbs-3.17-bioc/R/bin/R CMD INSTALL singleCellTK
###
##############################################################################
##############################################################################


* installing to library ‘/home/biocbuild/bbs-3.17-bioc/R-devel_2023-03-12_r83975-bin/site-library’
* installing *source* package ‘singleCellTK’ ...
** using staged installation
** R
** data
** exec
** inst
** byte-compile and prepare package for lazy loading
** help
*** installing help indices
** building package indices
** installing vignettes
** testing if installed package can be loaded from temporary location
** testing if installed package can be loaded from final location
** testing if installed package keeps a record of temporary installation path
* DONE (singleCellTK)

Tests output

singleCellTK.Rcheck/tests/spelling.Rout


R Under development (unstable) (2023-03-12 r83975) -- "Unsuffered Consequences"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> if (requireNamespace('spelling', quietly = TRUE))
+   spelling::spell_check_test(vignettes = TRUE, error = FALSE, skip_on_cran = TRUE)
NULL
> 
> proc.time()
   user  system elapsed 
  0.189   0.037   0.207 

singleCellTK.Rcheck/tests/testthat.Rout


R Under development (unstable) (2023-03-12 r83975) -- "Unsuffered Consequences"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> library(testthat)
> library(singleCellTK)
Loading required package: SummarizedExperiment
Loading required package: MatrixGenerics
Loading required package: matrixStats

Attaching package: 'MatrixGenerics'

The following objects are masked from 'package:matrixStats':

    colAlls, colAnyNAs, colAnys, colAvgsPerRowSet, colCollapse,
    colCounts, colCummaxs, colCummins, colCumprods, colCumsums,
    colDiffs, colIQRDiffs, colIQRs, colLogSumExps, colMadDiffs,
    colMads, colMaxs, colMeans2, colMedians, colMins, colOrderStats,
    colProds, colQuantiles, colRanges, colRanks, colSdDiffs, colSds,
    colSums2, colTabulates, colVarDiffs, colVars, colWeightedMads,
    colWeightedMeans, colWeightedMedians, colWeightedSds,
    colWeightedVars, rowAlls, rowAnyNAs, rowAnys, rowAvgsPerColSet,
    rowCollapse, rowCounts, rowCummaxs, rowCummins, rowCumprods,
    rowCumsums, rowDiffs, rowIQRDiffs, rowIQRs, rowLogSumExps,
    rowMadDiffs, rowMads, rowMaxs, rowMeans2, rowMedians, rowMins,
    rowOrderStats, rowProds, rowQuantiles, rowRanges, rowRanks,
    rowSdDiffs, rowSds, rowSums2, rowTabulates, rowVarDiffs, rowVars,
    rowWeightedMads, rowWeightedMeans, rowWeightedMedians,
    rowWeightedSds, rowWeightedVars

Loading required package: GenomicRanges
Loading required package: stats4
Loading required package: BiocGenerics

Attaching package: 'BiocGenerics'

The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs

The following objects are masked from 'package:base':

    Filter, Find, Map, Position, Reduce, anyDuplicated, aperm, append,
    as.data.frame, basename, cbind, colnames, dirname, do.call,
    duplicated, eval, evalq, get, grep, grepl, intersect, is.unsorted,
    lapply, mapply, match, mget, order, paste, pmax, pmax.int, pmin,
    pmin.int, rank, rbind, rownames, sapply, setdiff, sort, table,
    tapply, union, unique, unsplit, which.max, which.min

Loading required package: S4Vectors

Attaching package: 'S4Vectors'

The following objects are masked from 'package:base':

    I, expand.grid, unname

Loading required package: IRanges
Loading required package: GenomeInfoDb
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.


Attaching package: 'Biobase'

The following object is masked from 'package:MatrixGenerics':

    rowMedians

The following objects are masked from 'package:matrixStats':

    anyMissing, rowMedians

Loading required package: SingleCellExperiment
Loading required package: DelayedArray
Loading required package: Matrix

Attaching package: 'Matrix'

The following object is masked from 'package:S4Vectors':

    expand

Loading required package: S4Arrays

Attaching package: 'S4Arrays'

The following object is masked from 'package:base':

    rowsum

Loading required package: SparseArray

Attaching package: 'DelayedArray'

The following objects are masked from 'package:base':

    apply, scale, sweep


Attaching package: 'singleCellTK'

The following object is masked from 'package:BiocGenerics':

    plotPCA

> 
> test_check("singleCellTK")
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 0 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Found 2 batches
Using null model in ComBat-seq.
Adjusting for 1 covariate(s) or covariate level(s)
Estimating dispersions
Fitting the GLM model
Shrinkage off - using GLM estimates for parameters
Adjusting the data
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Uploading data to Enrichr... Done.
  Querying HDSigDB_Human_2021... Done.
Parsing results... Done.
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene means
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variance to mean ratios
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Estimating GSVA scores for 34 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |==                                                                    |   3%
  |                                                                            
  |====                                                                  |   6%
  |                                                                            
  |======                                                                |   9%
  |                                                                            
  |========                                                              |  12%
  |                                                                            
  |==========                                                            |  15%
  |                                                                            
  |============                                                          |  18%
  |                                                                            
  |==============                                                        |  21%
  |                                                                            
  |================                                                      |  24%
  |                                                                            
  |===================                                                   |  26%
  |                                                                            
  |=====================                                                 |  29%
  |                                                                            
  |=======================                                               |  32%
  |                                                                            
  |=========================                                             |  35%
  |                                                                            
  |===========================                                           |  38%
  |                                                                            
  |=============================                                         |  41%
  |                                                                            
  |===============================                                       |  44%
  |                                                                            
  |=================================                                     |  47%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |=====================================                                 |  53%
  |                                                                            
  |=======================================                               |  56%
  |                                                                            
  |=========================================                             |  59%
  |                                                                            
  |===========================================                           |  62%
  |                                                                            
  |=============================================                         |  65%
  |                                                                            
  |===============================================                       |  68%
  |                                                                            
  |=================================================                     |  71%
  |                                                                            
  |===================================================                   |  74%
  |                                                                            
  |======================================================                |  76%
  |                                                                            
  |========================================================              |  79%
  |                                                                            
  |==========================================================            |  82%
  |                                                                            
  |============================================================          |  85%
  |                                                                            
  |==============================================================        |  88%
  |                                                                            
  |================================================================      |  91%
  |                                                                            
  |==================================================================    |  94%
  |                                                                            
  |====================================================================  |  97%
  |                                                                            
  |======================================================================| 100%

Error in fitdistr(mahalanobis.sq.null[nonzero.values], "gamma", lower = 0.01) : 
  optimization failed
Estimating GSVA scores for 2 gene sets.
Estimating ECDFs with Gaussian kernels

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |===================================                                   |  50%
  |                                                                            
  |======================================================================| 100%

Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Calculating gene variances
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Calculating feature variances of standardized and clipped values
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 390
Number of edges: 9590

Running Louvain algorithm...
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
Maximum modularity in 10 random starts: 0.8042
Number of communities: 6
Elapsed time: 0 seconds
Using method 'umap'
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%

  |                                                                            
  |                                                                      |   0%
  |                                                                            
  |======================================================================| 100%
Performing log-normalization
0%   10   20   30   40   50   60   70   80   90   100%
[----|----|----|----|----|----|----|----|----|----|
**************************************************|
[ FAIL 0 | WARN 20 | SKIP 0 | PASS 220 ]

[ FAIL 0 | WARN 20 | SKIP 0 | PASS 220 ]
> 
> proc.time()
   user  system elapsed 
302.528   8.632 327.496 

Example timings

singleCellTK.Rcheck/singleCellTK-Ex.timings

nameusersystemelapsed
MitoGenes0.0040.0000.003
SEG0.0000.0030.003
calcEffectSizes1.030.001.03
combineSCE1.9870.0522.039
computeZScore0.2990.0280.327
convertSCEToSeurat4.1440.1764.321
convertSeuratToSCE0.5370.0040.541
dedupRowNames0.0750.0000.076
detectCellOutlier6.6340.1486.783
diffAbundanceFET0.0550.0000.056
discreteColorPalette0.0090.0000.008
distinctColors0.0030.0000.003
downSampleCells0.9280.0400.968
downSampleDepth0.7670.0040.772
expData-ANY-character-method0.4220.0040.426
expData-set-ANY-character-CharacterOrNullOrMissing-logical-method0.4760.0000.475
expData-set0.4770.0000.477
expData0.4540.0040.459
expDataNames-ANY-method0.4130.0040.417
expDataNames0.4080.0160.424
expDeleteDataTag0.0470.0000.047
expSetDataTag0.0340.0000.035
expTaggedData0.0360.0000.036
exportSCE0.0320.0000.033
exportSCEtoAnnData0.0910.0080.099
exportSCEtoFlatFile0.0970.0000.097
featureIndex0.0440.0080.051
generateSimulatedData0.0560.0000.057
getBiomarker0.0630.0000.063
getDEGTopTable1.1990.0001.200
getDiffAbundanceResults0.0390.0080.047
getEnrichRResult0.5040.0327.799
getFindMarkerTopTable4.3070.3684.676
getMSigDBTable0.0050.0000.004
getPathwayResultNames0.0280.0000.028
getSampleSummaryStatsTable0.4120.0120.424
getSoupX0.0010.0000.000
getTSCANResults2.3590.0842.442
getTopHVG1.0890.0561.145
importAnnData0.0000.0020.002
importBUStools0.3550.0200.378
importCellRanger1.4750.0321.510
importCellRangerV2Sample0.3590.0040.363
importCellRangerV3Sample0.540.020.56
importDropEst0.4090.0240.435
importExampleData23.073 1.34030.831
importGeneSetsFromCollection0.9680.0361.003
importGeneSetsFromGMT0.0890.0040.093
importGeneSetsFromList0.1740.0000.174
importGeneSetsFromMSigDB4.4420.2004.642
importMitoGeneSet0.0680.0080.076
importOptimus0.0020.0000.002
importSEQC0.3310.0120.345
importSTARsolo0.3600.0560.416
iterateSimulations0.5150.0200.535
listSampleSummaryStatsTables0.5400.0160.556
mergeSCEColData0.6310.0400.670
mouseBrainSubsetSCE0.0320.0000.033
msigdb_table0.0020.0000.002
plotBarcodeRankDropsResults1.2190.0401.259
plotBarcodeRankScatter0.9760.0120.988
plotBatchCorrCompare13.494 0.21213.697
plotBatchVariance0.4560.0400.496
plotBcdsResults10.776 0.235 9.880
plotClusterAbundance1.4710.0111.482
plotCxdsResults8.1370.3128.446
plotDEGHeatmap4.1080.4284.535
plotDEGRegression5.2750.3245.599
plotDEGViolin6.2050.2646.469
plotDEGVolcano1.4440.0201.464
plotDecontXResults 9.803 0.35610.162
plotDimRed0.3760.0080.383
plotDoubletFinderResults30.381 0.62030.998
plotEmptyDropsResults5.8640.0285.894
plotEmptyDropsScatter5.7010.0725.773
plotFindMarkerHeatmap6.5560.1006.656
plotMASTThresholdGenes2.1390.0162.155
plotPCA0.6680.0080.676
plotPathway1.3010.0161.318
plotRunPerCellQCResults3.1560.0043.160
plotSCEBarAssayData0.2320.0080.239
plotSCEBarColData0.1820.0000.182
plotSCEBatchFeatureMean0.3130.0080.320
plotSCEDensity0.3850.0040.389
plotSCEDensityAssayData0.2270.0040.231
plotSCEDensityColData0.2990.0000.300
plotSCEDimReduceColData1.1390.0081.147
plotSCEDimReduceFeatures0.5100.0040.513
plotSCEHeatmap1.1200.0281.149
plotSCEScatter0.4920.0040.495
plotSCEViolin0.3230.0040.330
plotSCEViolinAssayData0.3470.0000.347
plotSCEViolinColData0.4190.0040.424
plotScDblFinderResults29.705 0.63230.334
plotScanpyDotPlot0.0330.0000.033
plotScanpyEmbedding0.0320.0000.032
plotScanpyHVG0.0320.0000.032
plotScanpyHeatmap0.0320.0000.032
plotScanpyMarkerGenes0.0320.0000.031
plotScanpyMarkerGenesDotPlot0.0320.0000.032
plotScanpyMarkerGenesHeatmap0.0320.0000.032
plotScanpyMarkerGenesMatrixPlot0.0310.0000.032
plotScanpyMarkerGenesViolin0.0280.0040.032
plotScanpyMatrixPlot0.0290.0040.033
plotScanpyPCA0.0330.0000.033
plotScanpyPCAGeneRanking0.0330.0000.033
plotScanpyPCAVariance0.0320.0000.033
plotScanpyViolin0.0320.0000.031
plotScdsHybridResults12.053 0.16011.107
plotScrubletResults0.030.000.03
plotSeuratElbow0.0330.0000.032
plotSeuratHVG0.0330.0000.033
plotSeuratJackStraw0.0290.0000.029
plotSeuratReduction0.030.000.03
plotSoupXResults000
plotTSCANClusterDEG7.3820.0887.471
plotTSCANClusterPseudo3.1070.0563.163
plotTSCANDimReduceFeatures3.0640.0043.068
plotTSCANPseudotimeGenes2.9550.0282.984
plotTSCANPseudotimeHeatmap3.0010.0163.017
plotTSCANResults2.9190.0162.935
plotTSNE0.7510.0120.762
plotTopHVG0.5390.0000.539
plotUMAP8.1790.0848.259
readSingleCellMatrix0.0050.0000.006
reportCellQC0.2530.0000.252
reportDropletQC0.0320.0000.033
reportQCTool0.2490.0040.253
retrieveSCEIndex0.0410.0000.041
runBBKNN000
runBarcodeRankDrops0.5980.0000.598
runBcds3.4860.0362.362
runCellQC0.2310.0030.235
runComBatSeq0.6770.0000.677
runCxds0.8370.0110.849
runCxdsBcdsHybrid3.4810.0442.414
runDEAnalysis0.9830.0241.007
runDecontX8.2910.1328.424
runDimReduce0.6020.0040.605
runDoubletFinder22.647 0.05222.701
runDropletQC0.0230.0040.028
runEmptyDrops5.2860.0085.295
runEnrichR0.4840.0209.986
runFastMNN2.3820.1682.549
runFeatureSelection0.3000.0080.308
runFindMarker6.3570.4966.853
runGSVA0.9410.0520.993
runHarmony0.0510.0000.052
runKMeans0.5990.0680.667
runLimmaBC0.1070.0040.110
runMNNCorrect0.6780.0600.739
runModelGeneVar0.6480.0200.668
runNormalization0.7470.0400.786
runPerCellQC0.7660.0440.810
runSCANORAMA000
runSCMerge0.0050.0000.006
runScDblFinder30.161 0.79130.953
runScanpyFindClusters0.0310.0040.035
runScanpyFindHVG0.0300.0040.034
runScanpyFindMarkers0.0330.0000.033
runScanpyNormalizeData0.2630.0280.291
runScanpyPCA0.0300.0040.034
runScanpyScaleData0.0350.0000.035
runScanpyTSNE0.0310.0040.034
runScanpyUMAP0.0310.0040.036
runScranSNN1.0490.0841.133
runScrublet0.0340.0000.034
runSeuratFindClusters0.0330.0000.033
runSeuratFindHVG0.8890.0320.921
runSeuratHeatmap0.0330.0000.033
runSeuratICA0.0330.0000.033
runSeuratJackStraw0.0330.0000.033
runSeuratNormalizeData0.0330.0000.033
runSeuratPCA0.0320.0000.032
runSeuratSCTransform3.9880.2924.280
runSeuratScaleData0.0330.0000.032
runSeuratUMAP0.0330.0000.033
runSingleR0.0490.0000.049
runSoupX000
runTSCAN1.8860.0321.918
runTSCANClusterDEAnalysis2.0930.0202.113
runTSCANDEG2.0370.0402.076
runTSNE1.4040.0241.428
runUMAP7.9970.1768.170
runVAM0.7510.0000.751
runZINBWaVE0.0010.0040.005
sampleSummaryStats0.4060.0000.406
scaterCPM0.1570.0040.161
scaterPCA0.6000.0160.616
scaterlogNormCounts0.3190.0120.331
sce0.0350.0040.039
sctkListGeneSetCollections0.1090.0040.113
sctkPythonInstallConda0.0010.0000.001
sctkPythonInstallVirtualEnv0.0010.0000.001
selectSCTKConda000
selectSCTKVirtualEnvironment000
setRowNames0.1140.0040.118
setSCTKDisplayRow0.5190.0440.562
singleCellTK0.0010.0000.001
subDiffEx0.6900.0120.702
subsetSCECols0.2490.0000.249
subsetSCERows0.5860.0000.586
summarizeSCE0.0780.0000.077
trimCounts0.3200.0080.328