| Back to Build/check report for BioC 3.18: simplified long |
|
This page was generated on 2023-05-31 05:44:36 -0000 (Wed, 31 May 2023).
| Hostname | OS | Arch (*) | R version | Installed pkgs |
|---|---|---|---|---|
| kunpeng1 | Linux (Ubuntu 22.04.1 LTS) | aarch64 | 4.3.0 (2023-04-21) -- "Already Tomorrow" | 4219 |
| Click on any hostname to see more info about the system (e.g. compilers) (*) as reported by 'uname -p', except on Windows and Mac OS X | ||||
|
To the developers/maintainers of the HPiP package: - Allow up to 24 hours (and sometimes 48 hours) for your latest push to git@git.bioconductor.org:packages/HPiP.git to reflect on this report. See Troubleshooting Build Report for more information. - Use the following Renviron settings to reproduce errors and warnings. Note: If "R CMD check" recently failed on the Linux builder over a missing dependency, add the missing dependency to "Suggests" in your DESCRIPTION file. See the Renviron.bioc for details. |
| Package 936/2197 | Hostname | OS / Arch | INSTALL | BUILD | CHECK | BUILD BIN | ||||||||
| HPiP 1.7.0 (landing page) Matineh Rahmatbakhsh
| kunpeng1 | Linux (Ubuntu 22.04.1 LTS) / aarch64 | OK | OK | ERROR | |||||||||
| Package: HPiP |
| Version: 1.7.0 |
| Command: /home/biocbuild/R/R-4.3.0/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R-4.3.0/site-library --timings HPiP_1.7.0.tar.gz |
| StartedAt: 2023-05-30 09:47:40 -0000 (Tue, 30 May 2023) |
| EndedAt: 2023-05-30 09:55:59 -0000 (Tue, 30 May 2023) |
| EllapsedTime: 498.7 seconds |
| RetCode: 1 |
| Status: ERROR |
| CheckDir: HPiP.Rcheck |
| Warnings: NA |
##############################################################################
##############################################################################
###
### Running command:
###
### /home/biocbuild/R/R-4.3.0/bin/R CMD check --install=check:HPiP.install-out.txt --library=/home/biocbuild/R/R-4.3.0/site-library --timings HPiP_1.7.0.tar.gz
###
##############################################################################
##############################################################################
* using log directory ‘/home/biocbuild/bbs-3.18-bioc/meat/HPiP.Rcheck’
* using R version 4.3.0 (2023-04-21)
* using platform: aarch64-unknown-linux-gnu (64-bit)
* R was compiled by
gcc (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0
GNU Fortran (Ubuntu 11.3.0-1ubuntu1~22.04) 11.3.0
* running under: Ubuntu 22.04.2 LTS
* using session charset: UTF-8
* checking for file ‘HPiP/DESCRIPTION’ ... OK
* checking extension type ... Package
* this is package ‘HPiP’ version ‘1.7.0’
* package encoding: UTF-8
* checking package namespace information ... OK
* checking package dependencies ... OK
* checking if this is a source package ... OK
* checking if there is a namespace ... OK
* checking for hidden files and directories ... OK
* checking for portable file names ... OK
* checking for sufficient/correct file permissions ... OK
* checking whether package ‘HPiP’ can be installed ... OK
* checking installed package size ... OK
* checking package directory ... OK
* checking ‘build’ directory ... OK
* checking DESCRIPTION meta-information ... OK
* checking top-level files ... OK
* checking for left-over files ... OK
* checking index information ... OK
* checking package subdirectories ... OK
* checking R files for non-ASCII characters ... OK
* checking R files for syntax errors ... OK
* checking whether the package can be loaded ... OK
* checking whether the package can be loaded with stated dependencies ... OK
* checking whether the package can be unloaded cleanly ... OK
* checking whether the namespace can be loaded with stated dependencies ... OK
* checking whether the namespace can be unloaded cleanly ... OK
* checking loading without being on the library search path ... OK
* checking dependencies in R code ... OK
* checking S3 generic/method consistency ... OK
* checking replacement functions ... OK
* checking foreign function calls ... OK
* checking R code for possible problems ... OK
* checking Rd files ... OK
* checking Rd metadata ... OK
* checking Rd cross-references ... NOTE
Package unavailable to check Rd xrefs: ‘ftrCOOL’
* checking for missing documentation entries ... OK
* checking for code/documentation mismatches ... OK
* checking Rd \usage sections ... OK
* checking Rd contents ... OK
* checking for unstated dependencies in examples ... OK
* checking contents of ‘data’ directory ... OK
* checking data for non-ASCII characters ... OK
* checking data for ASCII and uncompressed saves ... OK
* checking R/sysdata.rda ... OK
* checking files in ‘vignettes’ ... OK
* checking examples ... OK
Examples with CPU (user + system) or elapsed time > 5s
user system elapsed
var_imp 40.284 0.640 40.923
FSmethod 37.631 0.616 38.248
corr_plot 37.545 0.540 38.084
pred_ensembel 17.985 0.603 16.220
getFASTA 1.142 0.030 11.497
enrichfindP 0.429 0.048 14.626
* checking for unstated dependencies in ‘tests’ ... OK
* checking tests ...
Running ‘runTests.R’
OK
* checking for unstated dependencies in vignettes ... OK
* checking package vignettes in ‘inst/doc’ ... OK
* checking running R code from vignettes ...
‘HPiP_tutorial.Rmd’ using ‘UTF-8’... OK
NONE
* checking re-building of vignette outputs ... ERROR
Error(s) in re-building vignettes:
...
--- re-building ‘HPiP_tutorial.Rmd’ using rmarkdown
Quitting from lines 928-938 [unnamed-chunk-50] (HPiP_tutorial.Rmd)
Error: processing vignette 'HPiP_tutorial.Rmd' failed with diagnostics:
replacement has length zero
--- failed re-building ‘HPiP_tutorial.Rmd’
SUMMARY: processing the following file failed:
‘HPiP_tutorial.Rmd’
Error: Vignette re-building failed.
Execution halted
* checking PDF version of manual ... OK
* DONE
Status: 1 ERROR, 1 NOTE
See
‘/home/biocbuild/bbs-3.18-bioc/meat/HPiP.Rcheck/00check.log’
for details.
HPiP.Rcheck/00install.out
############################################################################## ############################################################################## ### ### Running command: ### ### /home/biocbuild/R/R-4.3.0/bin/R CMD INSTALL HPiP ### ############################################################################## ############################################################################## * installing to library ‘/home/biocbuild/R/R-4.3.0/site-library’ * installing *source* package ‘HPiP’ ... ** using staged installation ** R ** data ** inst ** byte-compile and prepare package for lazy loading ** help *** installing help indices ** building package indices ** installing vignettes ** testing if installed package can be loaded from temporary location ** testing if installed package can be loaded from final location ** testing if installed package keeps a record of temporary installation path * DONE (HPiP)
HPiP.Rcheck/tests/runTests.Rout
R version 4.3.0 (2023-04-21) -- "Already Tomorrow"
Copyright (C) 2023 The R Foundation for Statistical Computing
Platform: aarch64-unknown-linux-gnu (64-bit)
R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.
R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.
Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.
> BiocGenerics:::testPackage('HPiP')
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
No results to show
Please make sure that the organism is correct or set significant = FALSE
avNNet
Loading required package: ggplot2
Loading required package: lattice
Fitting Repeat 1
# weights: 103
initial value 96.254122
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 102.708652
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 96.561843
final value 94.484053
converged
Fitting Repeat 4
# weights: 103
initial value 97.807741
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 103.397946
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 104.605520
final value 94.484211
converged
Fitting Repeat 2
# weights: 305
initial value 97.312456
iter 10 value 94.466667
iter 10 value 94.466667
iter 10 value 94.466667
final value 94.466667
converged
Fitting Repeat 3
# weights: 305
initial value 102.204106
final value 94.467391
converged
Fitting Repeat 4
# weights: 305
initial value 99.899284
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 95.704504
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 96.918009
final value 94.484210
converged
Fitting Repeat 2
# weights: 507
initial value 115.378626
iter 10 value 94.089164
final value 94.089147
converged
Fitting Repeat 3
# weights: 507
initial value 111.009723
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 105.895974
final value 94.484211
converged
Fitting Repeat 5
# weights: 507
initial value 106.736194
iter 10 value 93.464318
iter 20 value 86.156590
iter 30 value 85.695949
iter 40 value 85.694120
final value 85.694118
converged
Fitting Repeat 1
# weights: 103
initial value 99.512123
iter 10 value 94.301856
iter 20 value 86.154226
iter 30 value 83.925695
iter 40 value 83.650752
iter 50 value 82.657748
iter 60 value 82.015823
iter 70 value 81.910099
final value 81.905179
converged
Fitting Repeat 2
# weights: 103
initial value 101.188987
iter 10 value 94.477508
iter 20 value 89.022652
iter 30 value 84.086595
iter 40 value 81.560518
iter 50 value 80.367580
iter 60 value 79.764501
iter 70 value 79.591667
iter 80 value 79.503467
iter 90 value 79.441893
final value 79.441891
converged
Fitting Repeat 3
# weights: 103
initial value 98.668402
iter 10 value 94.516316
iter 20 value 94.478154
iter 30 value 88.226994
iter 40 value 87.511407
iter 50 value 83.713099
iter 60 value 82.417397
iter 70 value 82.273916
iter 80 value 82.079463
iter 90 value 82.021062
final value 82.020096
converged
Fitting Repeat 4
# weights: 103
initial value 105.594859
iter 10 value 94.480772
iter 20 value 94.036322
iter 30 value 93.805796
iter 40 value 84.660958
iter 50 value 84.337296
iter 60 value 83.891562
iter 70 value 83.041792
iter 80 value 82.796007
iter 90 value 82.752644
iter 90 value 82.752644
iter 90 value 82.752644
final value 82.752644
converged
Fitting Repeat 5
# weights: 103
initial value 98.988120
iter 10 value 94.891336
iter 20 value 94.491406
iter 30 value 94.439145
iter 40 value 91.474101
iter 50 value 85.847950
iter 60 value 85.632905
iter 70 value 83.227422
iter 80 value 82.707800
iter 90 value 82.373287
iter 100 value 82.338531
final value 82.338531
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 111.351946
iter 10 value 94.830251
iter 20 value 87.292692
iter 30 value 83.875831
iter 40 value 80.533009
iter 50 value 79.409972
iter 60 value 78.878559
iter 70 value 78.728772
iter 80 value 78.538941
iter 90 value 78.353470
iter 100 value 78.336834
final value 78.336834
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 101.384431
iter 10 value 94.489229
iter 20 value 90.525767
iter 30 value 85.810808
iter 40 value 82.964798
iter 50 value 82.389042
iter 60 value 81.212985
iter 70 value 79.261205
iter 80 value 78.385978
iter 90 value 78.163520
iter 100 value 78.099185
final value 78.099185
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 102.303871
iter 10 value 94.164857
iter 20 value 88.180133
iter 30 value 81.872283
iter 40 value 81.100149
iter 50 value 80.341630
iter 60 value 80.079402
iter 70 value 79.278566
iter 80 value 78.712678
iter 90 value 78.270189
iter 100 value 78.198786
final value 78.198786
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 113.289247
iter 10 value 93.918111
iter 20 value 87.401147
iter 30 value 86.670677
iter 40 value 85.555700
iter 50 value 83.908614
iter 60 value 83.820319
iter 70 value 83.117167
iter 80 value 82.623987
iter 90 value 81.427358
iter 100 value 80.828228
final value 80.828228
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 103.225263
iter 10 value 94.465442
iter 20 value 91.799582
iter 30 value 91.242434
iter 40 value 87.268484
iter 50 value 83.306501
iter 60 value 82.018852
iter 70 value 81.032794
iter 80 value 80.821766
iter 90 value 80.607720
iter 100 value 80.103898
final value 80.103898
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 129.418910
iter 10 value 94.496436
iter 20 value 89.609282
iter 30 value 84.036370
iter 40 value 83.298332
iter 50 value 82.316679
iter 60 value 78.971173
iter 70 value 78.475014
iter 80 value 78.240629
iter 90 value 77.798353
iter 100 value 77.684059
final value 77.684059
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 115.597045
iter 10 value 95.051311
iter 20 value 91.961549
iter 30 value 83.302884
iter 40 value 81.004454
iter 50 value 79.766491
iter 60 value 78.867818
iter 70 value 78.666157
iter 80 value 78.635893
iter 90 value 78.547678
iter 100 value 78.395145
final value 78.395145
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 142.160604
iter 10 value 93.961491
iter 20 value 89.175450
iter 30 value 85.640274
iter 40 value 83.521745
iter 50 value 80.383336
iter 60 value 79.898972
iter 70 value 78.974516
iter 80 value 78.453260
iter 90 value 77.828125
iter 100 value 77.703397
final value 77.703397
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 105.839902
iter 10 value 88.720370
iter 20 value 83.512608
iter 30 value 80.959017
iter 40 value 80.097745
iter 50 value 79.471862
iter 60 value 79.266083
iter 70 value 78.987967
iter 80 value 78.768486
iter 90 value 78.535430
iter 100 value 78.358431
final value 78.358431
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 110.914213
iter 10 value 97.966209
iter 20 value 91.867086
iter 30 value 85.439131
iter 40 value 81.274750
iter 50 value 80.668004
iter 60 value 78.919102
iter 70 value 78.399945
iter 80 value 77.979610
iter 90 value 77.884251
iter 100 value 77.679428
final value 77.679428
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 94.876916
final value 94.485827
converged
Fitting Repeat 2
# weights: 103
initial value 94.841667
final value 94.485618
converged
Fitting Repeat 3
# weights: 103
initial value 97.100840
final value 94.485887
converged
Fitting Repeat 4
# weights: 103
initial value 97.928423
final value 94.485607
converged
Fitting Repeat 5
# weights: 103
initial value 102.430792
final value 94.485620
converged
Fitting Repeat 1
# weights: 305
initial value 94.570174
iter 10 value 94.331122
iter 20 value 86.625237
iter 30 value 82.825643
iter 40 value 82.816745
iter 50 value 82.754901
iter 60 value 82.730464
iter 70 value 82.729772
iter 80 value 82.648135
iter 90 value 82.521699
iter 100 value 81.789161
final value 81.789161
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 107.982536
iter 10 value 94.488909
iter 20 value 94.320785
iter 30 value 85.844129
final value 85.844122
converged
Fitting Repeat 3
# weights: 305
initial value 101.394314
iter 10 value 94.489329
iter 20 value 94.349948
iter 30 value 86.111357
iter 40 value 86.075875
iter 50 value 86.020219
iter 60 value 86.017608
final value 86.017584
converged
Fitting Repeat 4
# weights: 305
initial value 99.473018
iter 10 value 94.489003
iter 20 value 83.916982
iter 30 value 82.763670
final value 82.761134
converged
Fitting Repeat 5
# weights: 305
initial value 106.406130
iter 10 value 94.489425
iter 20 value 94.419547
iter 30 value 91.669985
iter 40 value 82.358593
iter 50 value 82.353083
iter 60 value 81.199118
iter 70 value 81.123207
iter 80 value 81.122309
iter 90 value 81.025080
iter 100 value 81.003880
final value 81.003880
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 104.217508
iter 10 value 94.475221
iter 20 value 93.390717
iter 30 value 93.153008
iter 40 value 92.620457
iter 50 value 92.605329
iter 60 value 92.395446
iter 70 value 81.964117
iter 80 value 81.865520
iter 90 value 80.542003
iter 100 value 79.534095
final value 79.534095
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 97.788145
iter 10 value 94.491437
iter 20 value 92.873083
iter 30 value 91.137738
iter 40 value 91.120325
iter 50 value 91.055562
iter 60 value 89.781416
final value 89.760215
converged
Fitting Repeat 3
# weights: 507
initial value 94.617966
iter 10 value 94.491752
iter 20 value 94.252037
iter 30 value 85.856844
iter 40 value 85.783325
iter 50 value 85.783227
iter 60 value 85.781830
final value 84.522472
converged
Fitting Repeat 4
# weights: 507
initial value 105.253921
iter 10 value 94.475789
iter 20 value 94.469187
iter 30 value 94.453559
iter 40 value 94.324094
iter 50 value 91.181191
iter 60 value 91.092251
iter 70 value 91.088573
iter 80 value 91.082963
iter 90 value 91.075920
iter 100 value 91.073619
final value 91.073619
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 105.496854
iter 10 value 94.474810
iter 20 value 94.428156
iter 30 value 85.365566
iter 40 value 85.070018
iter 50 value 85.024252
iter 60 value 85.022183
iter 70 value 83.635882
iter 80 value 80.700929
iter 90 value 80.640082
iter 100 value 80.639254
final value 80.639254
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 94.730921
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 100.162533
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 100.878646
final value 93.837464
converged
Fitting Repeat 4
# weights: 103
initial value 94.525595
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 99.140440
final value 94.354396
converged
Fitting Repeat 1
# weights: 305
initial value 99.376837
final value 94.354396
converged
Fitting Repeat 2
# weights: 305
initial value 103.499727
iter 10 value 93.871479
iter 20 value 93.857541
iter 30 value 93.650110
final value 93.649843
converged
Fitting Repeat 3
# weights: 305
initial value 101.172733
iter 10 value 93.856097
iter 20 value 83.117457
iter 30 value 82.214790
iter 40 value 82.100788
final value 82.099569
converged
Fitting Repeat 4
# weights: 305
initial value 119.925178
iter 10 value 93.918906
iter 20 value 89.641531
iter 30 value 89.528598
final value 89.528569
converged
Fitting Repeat 5
# weights: 305
initial value 101.947693
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 101.663320
final value 94.354396
converged
Fitting Repeat 2
# weights: 507
initial value 107.421670
final value 93.769960
converged
Fitting Repeat 3
# weights: 507
initial value 118.417451
final value 94.484211
converged
Fitting Repeat 4
# weights: 507
initial value 112.106884
iter 10 value 94.502833
final value 94.484212
converged
Fitting Repeat 5
# weights: 507
initial value 117.755883
iter 10 value 87.955529
iter 20 value 87.213384
iter 30 value 87.208321
iter 30 value 87.208320
iter 30 value 87.208320
final value 87.208320
converged
Fitting Repeat 1
# weights: 103
initial value 112.030864
iter 10 value 93.883733
iter 20 value 86.275398
iter 30 value 85.984318
iter 40 value 85.724833
iter 50 value 85.405189
iter 60 value 85.197075
iter 70 value 84.915767
iter 80 value 84.854653
iter 90 value 83.090828
iter 100 value 82.429468
final value 82.429468
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 102.430312
iter 10 value 94.380861
iter 20 value 91.009216
iter 30 value 90.722317
iter 40 value 89.534730
iter 50 value 87.841609
iter 60 value 85.770517
iter 70 value 85.128411
iter 80 value 85.090970
iter 90 value 85.090441
final value 85.090335
converged
Fitting Repeat 3
# weights: 103
initial value 99.259779
iter 10 value 94.418547
iter 20 value 90.543443
iter 30 value 88.697795
iter 40 value 88.399368
iter 50 value 86.025710
iter 60 value 84.814868
iter 70 value 84.450451
final value 84.441524
converged
Fitting Repeat 4
# weights: 103
initial value 100.841400
iter 10 value 94.353912
iter 20 value 90.142531
iter 30 value 88.718864
iter 40 value 85.030544
iter 50 value 84.417028
iter 60 value 84.102186
final value 84.079543
converged
Fitting Repeat 5
# weights: 103
initial value 103.659617
iter 10 value 94.492015
iter 20 value 94.437238
iter 30 value 93.855223
iter 40 value 93.469188
iter 50 value 89.926330
iter 60 value 89.275677
iter 70 value 85.953229
iter 80 value 85.685623
iter 90 value 85.178852
iter 100 value 84.877024
final value 84.877024
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 103.421259
iter 10 value 93.518081
iter 20 value 85.960169
iter 30 value 85.475050
iter 40 value 83.008617
iter 50 value 81.455916
iter 60 value 81.283567
iter 70 value 81.230344
iter 80 value 81.174385
iter 90 value 81.094229
iter 100 value 80.836451
final value 80.836451
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 113.526058
iter 10 value 94.841663
iter 20 value 94.338820
iter 30 value 89.096998
iter 40 value 85.782255
iter 50 value 84.769920
iter 60 value 83.187707
iter 70 value 82.411564
iter 80 value 81.739514
iter 90 value 81.698989
iter 100 value 81.349659
final value 81.349659
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 103.205014
iter 10 value 94.731105
iter 20 value 94.425625
iter 30 value 93.109878
iter 40 value 90.153614
iter 50 value 88.984903
iter 60 value 88.449764
iter 70 value 83.495503
iter 80 value 82.233065
iter 90 value 81.536705
iter 100 value 81.278807
final value 81.278807
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 108.574494
iter 10 value 94.397280
iter 20 value 93.902805
iter 30 value 88.067354
iter 40 value 84.573677
iter 50 value 83.865682
iter 60 value 83.641488
iter 70 value 83.598159
iter 80 value 83.377597
iter 90 value 82.440452
iter 100 value 81.901897
final value 81.901897
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 114.988432
iter 10 value 94.418162
iter 20 value 89.074686
iter 30 value 86.105803
iter 40 value 84.026607
iter 50 value 83.453757
iter 60 value 82.782470
iter 70 value 82.656454
iter 80 value 82.523281
iter 90 value 81.838510
iter 100 value 81.611702
final value 81.611702
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 119.322606
iter 10 value 94.493062
iter 20 value 91.745941
iter 30 value 87.851478
iter 40 value 85.433345
iter 50 value 85.236612
iter 60 value 85.173620
iter 70 value 85.078653
iter 80 value 84.735889
iter 90 value 84.418900
iter 100 value 83.830818
final value 83.830818
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 108.501363
iter 10 value 94.706568
iter 20 value 92.663378
iter 30 value 88.045817
iter 40 value 85.175691
iter 50 value 84.694086
iter 60 value 82.575378
iter 70 value 81.360973
iter 80 value 81.273919
iter 90 value 81.134885
iter 100 value 81.074760
final value 81.074760
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 109.536520
iter 10 value 94.546690
iter 20 value 93.871112
iter 30 value 88.257166
iter 40 value 84.622963
iter 50 value 82.637167
iter 60 value 82.060022
iter 70 value 81.764363
iter 80 value 81.670516
iter 90 value 81.282864
iter 100 value 81.158241
final value 81.158241
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 106.378365
iter 10 value 94.477863
iter 20 value 92.350428
iter 30 value 90.148680
iter 40 value 85.995296
iter 50 value 83.670619
iter 60 value 82.549122
iter 70 value 82.445765
iter 80 value 82.272105
iter 90 value 82.083660
iter 100 value 81.897551
final value 81.897551
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 112.351099
iter 10 value 94.608257
iter 20 value 92.741562
iter 30 value 91.577149
iter 40 value 83.622926
iter 50 value 83.319641
iter 60 value 83.039020
iter 70 value 81.905053
iter 80 value 81.450510
iter 90 value 81.378842
iter 100 value 81.194407
final value 81.194407
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 94.615069
final value 94.486144
converged
Fitting Repeat 2
# weights: 103
initial value 95.824387
final value 94.485899
converged
Fitting Repeat 3
# weights: 103
initial value 97.410403
final value 94.485722
converged
Fitting Repeat 4
# weights: 103
initial value 94.693678
final value 94.485850
converged
Fitting Repeat 5
# weights: 103
initial value 102.881169
final value 94.485830
converged
Fitting Repeat 1
# weights: 305
initial value 108.786542
iter 10 value 94.489450
iter 20 value 93.951569
iter 30 value 93.788233
final value 93.788224
converged
Fitting Repeat 2
# weights: 305
initial value 109.627392
iter 10 value 94.359421
iter 20 value 94.355027
final value 94.354737
converged
Fitting Repeat 3
# weights: 305
initial value 95.418058
iter 10 value 94.489046
iter 20 value 94.480462
iter 30 value 87.501480
iter 40 value 84.800645
iter 50 value 83.879352
iter 60 value 83.834095
iter 70 value 83.191564
iter 80 value 82.064870
iter 90 value 81.919707
iter 100 value 81.814574
final value 81.814574
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 99.147016
iter 10 value 94.488421
iter 20 value 94.484269
final value 94.484216
converged
Fitting Repeat 5
# weights: 305
initial value 103.319509
iter 10 value 94.489324
iter 20 value 94.476982
iter 30 value 94.105979
iter 40 value 94.105384
final value 94.105356
converged
Fitting Repeat 1
# weights: 507
initial value 101.713129
iter 10 value 94.362359
iter 20 value 94.356563
iter 30 value 94.208083
iter 40 value 93.690944
iter 50 value 92.537115
iter 60 value 87.443404
iter 70 value 83.218818
iter 80 value 81.770494
iter 90 value 81.692319
final value 81.641377
converged
Fitting Repeat 2
# weights: 507
initial value 99.326262
iter 10 value 94.491334
iter 20 value 90.729847
iter 30 value 84.749974
iter 40 value 84.749369
iter 50 value 84.749057
final value 84.749052
converged
Fitting Repeat 3
# weights: 507
initial value 109.195152
iter 10 value 93.703500
iter 20 value 93.702782
iter 30 value 93.587550
iter 40 value 86.718134
iter 50 value 85.405336
iter 60 value 84.694705
iter 70 value 84.274043
iter 80 value 83.996951
iter 90 value 83.499490
iter 100 value 83.264890
final value 83.264890
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 95.761172
iter 10 value 94.489304
iter 20 value 94.468883
iter 30 value 92.652042
iter 40 value 84.873608
iter 50 value 84.737557
iter 60 value 83.112601
iter 70 value 82.994216
iter 80 value 82.979144
iter 90 value 82.979112
iter 100 value 82.979009
final value 82.979009
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 100.261323
iter 10 value 94.132582
iter 20 value 94.108720
iter 30 value 93.896622
iter 40 value 89.474310
iter 50 value 84.719158
iter 60 value 84.432193
iter 70 value 84.178633
iter 80 value 84.177953
final value 84.177526
converged
Fitting Repeat 1
# weights: 103
initial value 101.113693
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 105.670191
final value 93.836066
converged
Fitting Repeat 3
# weights: 103
initial value 104.557731
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 107.797684
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 94.962185
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 99.390112
final value 93.944596
converged
Fitting Repeat 2
# weights: 305
initial value 100.513604
final value 94.052911
converged
Fitting Repeat 3
# weights: 305
initial value 97.917959
final value 94.052910
converged
Fitting Repeat 4
# weights: 305
initial value 100.116251
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 119.995619
iter 10 value 93.838746
final value 93.836066
converged
Fitting Repeat 1
# weights: 507
initial value 102.510473
final value 93.836066
converged
Fitting Repeat 2
# weights: 507
initial value 122.791014
final value 94.052910
converged
Fitting Repeat 3
# weights: 507
initial value 104.386174
final value 93.836066
converged
Fitting Repeat 4
# weights: 507
initial value 105.760792
final value 94.052910
converged
Fitting Repeat 5
# weights: 507
initial value 98.341998
final value 93.183861
converged
Fitting Repeat 1
# weights: 103
initial value 105.389130
iter 10 value 94.055268
iter 20 value 93.647344
iter 30 value 91.506494
iter 40 value 91.407337
iter 50 value 85.162686
iter 60 value 84.088236
iter 70 value 83.294274
iter 80 value 81.614112
iter 90 value 81.480225
final value 81.475611
converged
Fitting Repeat 2
# weights: 103
initial value 102.985612
iter 10 value 94.072027
iter 20 value 92.970773
iter 30 value 89.124368
iter 40 value 87.191589
iter 50 value 86.789379
iter 60 value 85.133947
iter 70 value 82.529665
iter 80 value 81.801553
iter 90 value 81.756699
iter 100 value 81.404477
final value 81.404477
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 99.446967
iter 10 value 94.056576
iter 20 value 93.648335
iter 30 value 89.858306
iter 40 value 87.182964
iter 50 value 86.015476
iter 60 value 84.998345
iter 70 value 84.488252
iter 80 value 83.904320
iter 90 value 83.722265
iter 100 value 83.710592
final value 83.710592
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 99.274034
iter 10 value 94.052183
iter 20 value 89.268706
iter 30 value 85.508646
iter 40 value 84.786958
iter 50 value 84.500179
iter 60 value 81.777960
iter 70 value 81.527835
iter 80 value 81.291678
final value 81.281404
converged
Fitting Repeat 5
# weights: 103
initial value 117.357271
iter 10 value 94.054877
iter 20 value 93.615917
iter 30 value 93.303349
iter 40 value 93.276342
iter 50 value 87.561326
iter 60 value 86.134193
iter 70 value 84.824223
iter 80 value 84.703621
iter 90 value 84.133064
iter 100 value 82.518088
final value 82.518088
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 99.434854
iter 10 value 94.073196
iter 20 value 93.901749
iter 30 value 92.032989
iter 40 value 91.806955
iter 50 value 91.292057
iter 60 value 90.898285
iter 70 value 90.311780
iter 80 value 86.022048
iter 90 value 84.132010
iter 100 value 83.103665
final value 83.103665
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 107.727428
iter 10 value 92.585912
iter 20 value 87.738574
iter 30 value 87.311750
iter 40 value 85.085163
iter 50 value 83.647106
iter 60 value 83.208312
iter 70 value 82.382577
iter 80 value 81.508494
iter 90 value 81.131458
iter 100 value 81.013267
final value 81.013267
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 98.727427
iter 10 value 90.827936
iter 20 value 86.807799
iter 30 value 84.017975
iter 40 value 83.483092
iter 50 value 83.449890
iter 60 value 83.337548
iter 70 value 82.968305
iter 80 value 82.668699
iter 90 value 81.385364
iter 100 value 80.902012
final value 80.902012
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 106.590434
iter 10 value 93.648272
iter 20 value 90.581219
iter 30 value 89.434781
iter 40 value 89.186080
iter 50 value 86.744307
iter 60 value 85.759687
iter 70 value 85.557899
iter 80 value 85.433017
iter 90 value 85.330061
iter 100 value 82.633723
final value 82.633723
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 102.804423
iter 10 value 94.121276
iter 20 value 93.713576
iter 30 value 93.504879
iter 40 value 89.495518
iter 50 value 86.272489
iter 60 value 83.566948
iter 70 value 82.979006
iter 80 value 82.432966
iter 90 value 82.302996
iter 100 value 82.089243
final value 82.089243
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 106.432364
iter 10 value 94.185040
iter 20 value 93.952573
iter 30 value 93.385450
iter 40 value 88.459931
iter 50 value 84.929828
iter 60 value 84.037399
iter 70 value 82.276012
iter 80 value 81.623252
iter 90 value 80.648055
iter 100 value 80.337036
final value 80.337036
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 120.418479
iter 10 value 94.078544
iter 20 value 86.661072
iter 30 value 84.131543
iter 40 value 82.702686
iter 50 value 81.780595
iter 60 value 81.329427
iter 70 value 81.031129
iter 80 value 80.774555
iter 90 value 80.654418
iter 100 value 80.476969
final value 80.476969
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 114.868456
iter 10 value 92.218022
iter 20 value 88.157367
iter 30 value 86.420570
iter 40 value 85.217936
iter 50 value 82.985669
iter 60 value 82.274509
iter 70 value 82.075808
iter 80 value 81.460827
iter 90 value 80.956048
iter 100 value 80.542297
final value 80.542297
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 126.467842
iter 10 value 94.054395
iter 20 value 87.092187
iter 30 value 85.663439
iter 40 value 82.403427
iter 50 value 81.328888
iter 60 value 80.972554
iter 70 value 80.767390
iter 80 value 80.673804
iter 90 value 80.587232
iter 100 value 80.527774
final value 80.527774
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 107.604101
iter 10 value 93.858148
iter 20 value 85.127604
iter 30 value 84.618874
iter 40 value 82.439033
iter 50 value 80.901514
iter 60 value 80.453832
iter 70 value 80.232014
iter 80 value 80.061074
iter 90 value 79.873623
iter 100 value 79.753940
final value 79.753940
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 106.738149
final value 94.054520
converged
Fitting Repeat 2
# weights: 103
initial value 100.726569
final value 94.054684
converged
Fitting Repeat 3
# weights: 103
initial value 97.589974
iter 10 value 93.569461
iter 20 value 93.536733
iter 30 value 93.535855
final value 93.535557
converged
Fitting Repeat 4
# weights: 103
initial value 99.492627
final value 94.051336
converged
Fitting Repeat 5
# weights: 103
initial value 102.626881
iter 10 value 94.054426
iter 20 value 94.052927
iter 30 value 93.918177
iter 40 value 86.038368
iter 50 value 86.037681
iter 60 value 86.035480
iter 70 value 86.035296
iter 80 value 86.035100
iter 90 value 83.836028
iter 100 value 83.647080
final value 83.647080
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 99.232869
iter 10 value 94.058246
iter 20 value 94.048399
iter 30 value 83.700265
iter 40 value 83.192983
iter 50 value 83.018407
iter 60 value 82.991589
iter 70 value 82.977611
iter 80 value 82.773607
iter 90 value 81.717438
iter 100 value 81.652419
final value 81.652419
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 99.068004
iter 10 value 94.057240
iter 20 value 94.032093
iter 30 value 87.966197
iter 40 value 85.617021
iter 50 value 84.643159
iter 60 value 84.434661
iter 70 value 83.556066
iter 80 value 83.488682
iter 90 value 83.488314
iter 100 value 83.487787
final value 83.487787
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 94.606661
iter 10 value 93.840813
iter 20 value 93.836424
final value 93.836405
converged
Fitting Repeat 4
# weights: 305
initial value 116.847407
iter 10 value 94.056607
iter 20 value 93.858787
final value 93.830762
converged
Fitting Repeat 5
# weights: 305
initial value 99.282121
iter 10 value 93.841101
iter 20 value 92.550639
iter 30 value 90.738610
iter 40 value 90.736641
iter 50 value 90.736338
iter 60 value 89.653621
iter 70 value 89.594280
final value 89.594138
converged
Fitting Repeat 1
# weights: 507
initial value 107.020140
iter 10 value 93.844165
iter 20 value 93.420733
iter 30 value 86.036814
iter 40 value 86.035231
iter 50 value 86.034917
iter 60 value 85.689184
iter 70 value 85.457979
iter 80 value 85.432806
final value 85.432761
converged
Fitting Repeat 2
# weights: 507
initial value 117.653797
iter 10 value 93.007374
iter 20 value 90.218364
iter 30 value 86.139667
iter 40 value 86.055056
iter 50 value 86.048161
iter 60 value 86.043933
iter 70 value 86.042849
iter 80 value 86.042637
iter 90 value 86.039072
iter 100 value 86.038873
final value 86.038873
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 97.166991
iter 10 value 93.709707
iter 20 value 93.580113
final value 93.435381
converged
Fitting Repeat 4
# weights: 507
initial value 112.832931
iter 10 value 94.059929
iter 20 value 94.052477
iter 30 value 84.208018
iter 40 value 82.637386
iter 50 value 80.141228
iter 60 value 79.454229
iter 70 value 79.196145
iter 80 value 79.194862
final value 79.193134
converged
Fitting Repeat 5
# weights: 507
initial value 106.306938
iter 10 value 94.028928
iter 20 value 93.952271
iter 30 value 93.470264
iter 40 value 93.090143
final value 93.075103
converged
Fitting Repeat 1
# weights: 103
initial value 98.762773
final value 94.052910
converged
Fitting Repeat 2
# weights: 103
initial value 101.128585
final value 94.052910
converged
Fitting Repeat 3
# weights: 103
initial value 94.133284
final value 94.052910
converged
Fitting Repeat 4
# weights: 103
initial value 106.347414
final value 94.052910
converged
Fitting Repeat 5
# weights: 103
initial value 96.024145
final value 94.052910
converged
Fitting Repeat 1
# weights: 305
initial value 96.119457
final value 94.052910
converged
Fitting Repeat 2
# weights: 305
initial value 99.881397
iter 10 value 94.051397
final value 94.043243
converged
Fitting Repeat 3
# weights: 305
initial value 103.704086
final value 93.900000
converged
Fitting Repeat 4
# weights: 305
initial value 95.199497
final value 94.052910
converged
Fitting Repeat 5
# weights: 305
initial value 106.723802
final value 94.052910
converged
Fitting Repeat 1
# weights: 507
initial value 114.918154
final value 94.052910
converged
Fitting Repeat 2
# weights: 507
initial value 98.976009
final value 94.052910
converged
Fitting Repeat 3
# weights: 507
initial value 104.119268
final value 94.052910
converged
Fitting Repeat 4
# weights: 507
initial value 96.248187
final value 94.052910
converged
Fitting Repeat 5
# weights: 507
initial value 99.358472
final value 94.052910
converged
Fitting Repeat 1
# weights: 103
initial value 97.028232
iter 10 value 94.060346
iter 20 value 93.772743
iter 30 value 93.683944
iter 40 value 93.455029
iter 50 value 89.313689
iter 60 value 87.137981
iter 70 value 86.372355
iter 80 value 85.684309
iter 90 value 85.457589
iter 100 value 85.330981
final value 85.330981
stopped after 100 iterations
Fitting Repeat 2
# weights: 103
initial value 100.353337
iter 10 value 94.070031
iter 20 value 93.742081
iter 30 value 93.709173
iter 40 value 93.683963
iter 50 value 88.901424
iter 60 value 87.132569
iter 70 value 86.202435
iter 80 value 85.685873
iter 90 value 85.081450
iter 100 value 84.854992
final value 84.854992
stopped after 100 iterations
Fitting Repeat 3
# weights: 103
initial value 105.843410
iter 10 value 94.025421
iter 20 value 93.697362
iter 30 value 89.011204
iter 40 value 88.738598
iter 50 value 88.649752
iter 60 value 87.517830
iter 70 value 86.474007
iter 80 value 85.779887
iter 90 value 85.396347
iter 100 value 85.340883
final value 85.340883
stopped after 100 iterations
Fitting Repeat 4
# weights: 103
initial value 96.921453
iter 10 value 94.025170
iter 20 value 92.971278
iter 30 value 92.683985
iter 40 value 92.607068
iter 50 value 92.404619
iter 60 value 92.349534
iter 70 value 85.262472
iter 80 value 84.951467
iter 90 value 84.767057
iter 100 value 84.530207
final value 84.530207
stopped after 100 iterations
Fitting Repeat 5
# weights: 103
initial value 97.971568
iter 10 value 94.027930
iter 20 value 93.201943
iter 30 value 91.717504
iter 40 value 91.327343
iter 50 value 90.171007
iter 60 value 87.717746
iter 70 value 86.384239
iter 80 value 85.665747
iter 90 value 85.613740
iter 100 value 84.628929
final value 84.628929
stopped after 100 iterations
Fitting Repeat 1
# weights: 305
initial value 115.946198
iter 10 value 94.130760
iter 20 value 93.677387
iter 30 value 91.954913
iter 40 value 88.161325
iter 50 value 85.533301
iter 60 value 84.379097
iter 70 value 84.284734
iter 80 value 84.179683
iter 90 value 83.978027
iter 100 value 83.469018
final value 83.469018
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 102.677997
iter 10 value 94.048133
iter 20 value 93.633806
iter 30 value 92.790658
iter 40 value 90.589622
iter 50 value 87.636298
iter 60 value 86.063042
iter 70 value 85.392251
iter 80 value 85.215666
iter 90 value 85.120237
iter 100 value 84.937661
final value 84.937661
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 110.169198
iter 10 value 94.047725
iter 20 value 88.833553
iter 30 value 87.306006
iter 40 value 86.897465
iter 50 value 86.477116
iter 60 value 84.723286
iter 70 value 84.210439
iter 80 value 83.620151
iter 90 value 83.222234
iter 100 value 82.964634
final value 82.964634
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 107.651651
iter 10 value 98.276711
iter 20 value 94.325890
iter 30 value 93.135884
iter 40 value 92.657463
iter 50 value 92.430723
iter 60 value 92.071614
iter 70 value 92.002295
iter 80 value 86.877798
iter 90 value 86.717965
iter 100 value 85.770683
final value 85.770683
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 100.796154
iter 10 value 94.474828
iter 20 value 94.295607
iter 30 value 93.835552
iter 40 value 93.719082
iter 50 value 93.143965
iter 60 value 89.776342
iter 70 value 86.682212
iter 80 value 84.373189
iter 90 value 84.137930
iter 100 value 83.856287
final value 83.856287
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 106.547444
iter 10 value 94.564626
iter 20 value 93.507222
iter 30 value 92.731353
iter 40 value 92.527092
iter 50 value 91.625904
iter 60 value 88.462872
iter 70 value 86.903726
iter 80 value 85.211677
iter 90 value 83.851772
iter 100 value 83.215490
final value 83.215490
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 114.599888
iter 10 value 94.047953
iter 20 value 92.401618
iter 30 value 87.592192
iter 40 value 86.688796
iter 50 value 85.006932
iter 60 value 83.842132
iter 70 value 83.526321
iter 80 value 83.020733
iter 90 value 82.660372
iter 100 value 82.471915
final value 82.471915
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 109.073675
iter 10 value 95.602280
iter 20 value 92.968631
iter 30 value 88.573066
iter 40 value 88.086320
iter 50 value 86.654647
iter 60 value 85.639051
iter 70 value 85.342073
iter 80 value 85.238798
iter 90 value 85.033728
iter 100 value 84.589319
final value 84.589319
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 119.781091
iter 10 value 96.121889
iter 20 value 95.576361
iter 30 value 92.001996
iter 40 value 87.159217
iter 50 value 85.018409
iter 60 value 83.648588
iter 70 value 83.254256
iter 80 value 82.993374
iter 90 value 82.661140
iter 100 value 82.430886
final value 82.430886
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 114.200611
iter 10 value 94.097497
iter 20 value 91.585131
iter 30 value 90.693242
iter 40 value 89.177633
iter 50 value 85.832701
iter 60 value 85.295468
iter 70 value 84.710585
iter 80 value 84.025728
iter 90 value 83.600866
iter 100 value 83.406754
final value 83.406754
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 114.376261
final value 94.054791
converged
Fitting Repeat 2
# weights: 103
initial value 113.998289
final value 94.054862
converged
Fitting Repeat 3
# weights: 103
initial value 101.553929
iter 10 value 94.054678
final value 94.052928
converged
Fitting Repeat 4
# weights: 103
initial value 97.716756
final value 94.054455
converged
Fitting Repeat 5
# weights: 103
initial value 101.740726
final value 94.054421
converged
Fitting Repeat 1
# weights: 305
initial value 102.431139
iter 10 value 93.587470
iter 20 value 93.585781
iter 30 value 93.584011
iter 40 value 93.577239
iter 50 value 87.710719
iter 60 value 87.081522
iter 70 value 86.409039
iter 80 value 86.285147
iter 90 value 86.284776
iter 100 value 86.284353
final value 86.284353
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 94.837654
iter 10 value 93.465430
iter 20 value 93.464060
iter 30 value 93.228671
iter 40 value 92.501679
iter 50 value 92.474596
iter 60 value 92.474419
final value 92.474374
converged
Fitting Repeat 3
# weights: 305
initial value 101.121725
iter 10 value 93.324323
iter 20 value 93.322160
iter 30 value 93.307244
iter 40 value 93.305143
iter 50 value 93.299947
iter 60 value 93.278060
iter 70 value 88.705723
iter 80 value 86.819843
iter 90 value 86.474134
final value 86.474122
converged
Fitting Repeat 4
# weights: 305
initial value 106.268928
iter 10 value 94.058310
iter 20 value 93.989808
iter 30 value 93.583342
iter 30 value 93.583341
iter 30 value 93.583341
final value 93.583341
converged
Fitting Repeat 5
# weights: 305
initial value 116.128164
iter 10 value 94.029987
iter 20 value 94.012306
iter 30 value 93.873661
iter 40 value 93.770052
iter 50 value 87.569773
iter 60 value 87.392455
iter 70 value 87.046224
iter 80 value 86.468875
iter 90 value 86.363116
final value 86.363006
converged
Fitting Repeat 1
# weights: 507
initial value 121.897908
iter 10 value 93.480873
iter 20 value 87.014056
iter 30 value 86.937376
iter 40 value 86.121858
final value 86.121836
converged
Fitting Repeat 2
# weights: 507
initial value 94.559432
iter 10 value 86.403141
iter 20 value 85.704670
iter 30 value 84.963200
iter 40 value 84.616993
iter 50 value 84.545449
iter 60 value 84.544194
iter 70 value 83.659666
iter 80 value 83.279449
iter 90 value 83.278819
iter 100 value 83.275931
final value 83.275931
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 99.831213
iter 10 value 94.060957
iter 20 value 94.045368
iter 30 value 93.791705
final value 93.582721
converged
Fitting Repeat 4
# weights: 507
initial value 99.359086
iter 10 value 93.676302
iter 20 value 93.590926
iter 30 value 93.535882
iter 40 value 88.857885
iter 50 value 88.037468
iter 60 value 87.749143
iter 70 value 87.452908
iter 80 value 85.603470
iter 90 value 83.200979
iter 100 value 83.124529
final value 83.124529
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 112.425308
iter 10 value 93.591498
iter 20 value 93.584206
iter 30 value 93.583482
final value 93.583457
converged
Fitting Repeat 1
# weights: 103
initial value 96.280700
final value 94.484211
converged
Fitting Repeat 2
# weights: 103
initial value 95.219777
final value 94.484211
converged
Fitting Repeat 3
# weights: 103
initial value 102.022101
final value 94.484211
converged
Fitting Repeat 4
# weights: 103
initial value 98.369681
final value 94.484211
converged
Fitting Repeat 5
# weights: 103
initial value 95.486961
final value 94.484211
converged
Fitting Repeat 1
# weights: 305
initial value 95.048519
iter 10 value 94.109864
iter 20 value 93.684427
iter 30 value 93.672370
final value 93.670383
converged
Fitting Repeat 2
# weights: 305
initial value 103.264086
final value 94.484211
converged
Fitting Repeat 3
# weights: 305
initial value 112.629006
final value 94.484211
converged
Fitting Repeat 4
# weights: 305
initial value 110.954469
final value 94.484211
converged
Fitting Repeat 5
# weights: 305
initial value 98.376413
final value 94.484211
converged
Fitting Repeat 1
# weights: 507
initial value 102.237981
iter 10 value 93.362987
final value 93.285720
converged
Fitting Repeat 2
# weights: 507
initial value 106.836036
final value 94.443243
converged
Fitting Repeat 3
# weights: 507
initial value 97.660488
final value 94.443243
converged
Fitting Repeat 4
# weights: 507
initial value 102.791097
iter 10 value 93.452494
iter 20 value 88.127008
iter 30 value 84.774671
final value 84.766416
converged
Fitting Repeat 5
# weights: 507
initial value 98.536163
final value 94.443243
converged
Fitting Repeat 1
# weights: 103
initial value 99.027950
iter 10 value 94.488766
iter 20 value 93.986062
iter 30 value 93.914332
iter 40 value 92.069108
iter 50 value 84.328205
iter 60 value 84.200270
iter 70 value 84.144794
iter 80 value 84.098326
iter 90 value 84.092114
final value 84.092095
converged
Fitting Repeat 2
# weights: 103
initial value 97.110674
iter 10 value 94.489582
iter 20 value 93.259075
iter 30 value 84.216054
iter 40 value 84.127853
iter 50 value 84.101630
iter 60 value 83.684828
iter 70 value 83.532375
final value 83.530131
converged
Fitting Repeat 3
# weights: 103
initial value 98.466623
iter 10 value 94.486710
iter 20 value 94.399176
iter 30 value 90.784870
iter 40 value 84.198485
iter 50 value 84.159813
iter 60 value 83.576795
iter 70 value 83.526082
iter 80 value 83.523604
final value 83.523600
converged
Fitting Repeat 4
# weights: 103
initial value 105.834466
iter 10 value 94.201528
iter 20 value 87.689755
iter 30 value 86.749057
iter 40 value 86.273822
iter 50 value 83.187821
iter 60 value 83.076458
iter 70 value 83.064465
final value 83.064037
converged
Fitting Repeat 5
# weights: 103
initial value 96.208970
iter 10 value 94.482241
iter 20 value 91.535432
iter 30 value 84.746647
iter 40 value 84.156487
iter 50 value 83.890365
iter 60 value 83.809244
final value 83.805596
converged
Fitting Repeat 1
# weights: 305
initial value 103.303287
iter 10 value 94.483069
iter 20 value 93.932701
iter 30 value 92.997699
iter 40 value 86.734012
iter 50 value 85.276290
iter 60 value 81.074523
iter 70 value 79.742275
iter 80 value 79.058200
iter 90 value 77.998519
iter 100 value 77.599500
final value 77.599500
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 101.083231
iter 10 value 94.493252
iter 20 value 88.248331
iter 30 value 86.335429
iter 40 value 86.096237
iter 50 value 82.559693
iter 60 value 80.762503
iter 70 value 79.457296
iter 80 value 79.278559
iter 90 value 78.971725
iter 100 value 78.424970
final value 78.424970
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 99.952748
iter 10 value 94.369708
iter 20 value 91.725461
iter 30 value 87.565064
iter 40 value 83.229794
iter 50 value 79.579985
iter 60 value 78.202244
iter 70 value 78.084488
iter 80 value 77.894988
iter 90 value 77.826152
iter 100 value 77.797104
final value 77.797104
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 104.924313
iter 10 value 96.967671
iter 20 value 85.527085
iter 30 value 81.471291
iter 40 value 80.405575
iter 50 value 79.174833
iter 60 value 78.607775
iter 70 value 78.344731
iter 80 value 78.322108
iter 90 value 78.313083
final value 78.312662
converged
Fitting Repeat 5
# weights: 305
initial value 113.597882
iter 10 value 94.605905
iter 20 value 94.345206
iter 30 value 93.550303
iter 40 value 84.290788
iter 50 value 83.125114
iter 60 value 82.983963
iter 70 value 82.727111
iter 80 value 82.603432
iter 90 value 82.497902
iter 100 value 81.699248
final value 81.699248
stopped after 100 iterations
Fitting Repeat 1
# weights: 507
initial value 104.131923
iter 10 value 94.693384
iter 20 value 87.325640
iter 30 value 85.121366
iter 40 value 84.175759
iter 50 value 83.150688
iter 60 value 82.407590
iter 70 value 80.149586
iter 80 value 78.693493
iter 90 value 77.831822
iter 100 value 77.570045
final value 77.570045
stopped after 100 iterations
Fitting Repeat 2
# weights: 507
initial value 131.967962
iter 10 value 95.366485
iter 20 value 94.408590
iter 30 value 88.068746
iter 40 value 83.709392
iter 50 value 82.915731
iter 60 value 82.496677
iter 70 value 81.125358
iter 80 value 79.837090
iter 90 value 79.114120
iter 100 value 78.968750
final value 78.968750
stopped after 100 iterations
Fitting Repeat 3
# weights: 507
initial value 111.236887
iter 10 value 94.400550
iter 20 value 84.126459
iter 30 value 81.922228
iter 40 value 81.497932
iter 50 value 80.850395
iter 60 value 80.468307
iter 70 value 80.287638
iter 80 value 79.600227
iter 90 value 78.810233
iter 100 value 78.012552
final value 78.012552
stopped after 100 iterations
Fitting Repeat 4
# weights: 507
initial value 106.773844
iter 10 value 94.710932
iter 20 value 94.291624
iter 30 value 91.076099
iter 40 value 82.370930
iter 50 value 80.464410
iter 60 value 79.826125
iter 70 value 79.164258
iter 80 value 78.049793
iter 90 value 77.641236
iter 100 value 77.584751
final value 77.584751
stopped after 100 iterations
Fitting Repeat 5
# weights: 507
initial value 106.879899
iter 10 value 94.452407
iter 20 value 92.077465
iter 30 value 82.902098
iter 40 value 81.794698
iter 50 value 80.238882
iter 60 value 78.663454
iter 70 value 78.326363
iter 80 value 78.294898
iter 90 value 78.272125
iter 100 value 78.166213
final value 78.166213
stopped after 100 iterations
Fitting Repeat 1
# weights: 103
initial value 100.221535
final value 94.444833
converged
Fitting Repeat 2
# weights: 103
initial value 98.143298
iter 10 value 94.487700
final value 94.485901
converged
Fitting Repeat 3
# weights: 103
initial value 104.152811
iter 10 value 93.975322
iter 20 value 86.230092
iter 30 value 86.060080
iter 40 value 86.054919
iter 50 value 86.054680
final value 86.054677
converged
Fitting Repeat 4
# weights: 103
initial value 101.904100
iter 10 value 94.485696
iter 20 value 94.301073
final value 94.105975
converged
Fitting Repeat 5
# weights: 103
initial value 95.394646
final value 94.485731
converged
Fitting Repeat 1
# weights: 305
initial value 98.604072
iter 10 value 90.320756
iter 20 value 90.226313
iter 30 value 90.203878
iter 40 value 90.175919
iter 50 value 90.171826
iter 60 value 90.171507
final value 90.171332
converged
Fitting Repeat 2
# weights: 305
initial value 101.770490
iter 10 value 94.489119
iter 20 value 94.251012
iter 30 value 92.940847
iter 40 value 92.938982
iter 50 value 92.937620
iter 60 value 92.937510
final value 92.937443
converged
Fitting Repeat 3
# weights: 305
initial value 107.094398
iter 10 value 94.496594
iter 20 value 87.686118
iter 30 value 86.068535
iter 40 value 86.060069
iter 50 value 86.057070
iter 60 value 83.671233
iter 70 value 83.031616
iter 80 value 83.030662
final value 83.026681
converged
Fitting Repeat 4
# weights: 305
initial value 96.437250
iter 10 value 94.448183
iter 20 value 94.443496
final value 94.443314
converged
Fitting Repeat 5
# weights: 305
initial value 121.512398
iter 10 value 94.447682
iter 20 value 94.443634
iter 30 value 93.320481
iter 40 value 85.674884
iter 50 value 85.673054
final value 85.672802
converged
Fitting Repeat 1
# weights: 507
initial value 108.403791
iter 10 value 91.260812
iter 20 value 89.125503
iter 30 value 89.077270
iter 40 value 89.074716
iter 50 value 89.069272
final value 89.069234
converged
Fitting Repeat 2
# weights: 507
initial value 113.906096
iter 10 value 94.493822
iter 20 value 94.487207
iter 30 value 94.485204
iter 40 value 94.416214
final value 94.106547
converged
Fitting Repeat 3
# weights: 507
initial value 119.506704
iter 10 value 94.452269
iter 20 value 94.443542
iter 30 value 94.404708
iter 40 value 85.254199
iter 50 value 83.029420
iter 60 value 82.999748
iter 70 value 82.998949
final value 82.998948
converged
Fitting Repeat 4
# weights: 507
initial value 100.724563
iter 10 value 94.489887
iter 20 value 93.293367
iter 30 value 85.761812
iter 40 value 85.683128
iter 50 value 85.648474
iter 60 value 85.626226
iter 70 value 85.625114
final value 85.622984
converged
Fitting Repeat 5
# weights: 507
initial value 102.187846
iter 10 value 94.153237
iter 20 value 94.096747
iter 30 value 93.686677
iter 40 value 93.671531
iter 50 value 93.671201
final value 93.670793
converged
Fitting Repeat 1
# weights: 305
initial value 131.469728
iter 10 value 119.391297
iter 20 value 115.091752
iter 30 value 106.805197
iter 40 value 105.609879
iter 50 value 105.393983
iter 60 value 105.240056
iter 70 value 104.336511
iter 80 value 103.275206
iter 90 value 103.137816
iter 100 value 102.833555
final value 102.833555
stopped after 100 iterations
Fitting Repeat 2
# weights: 305
initial value 127.077836
iter 10 value 117.568482
iter 20 value 112.521780
iter 30 value 106.807467
iter 40 value 105.282369
iter 50 value 104.675882
iter 60 value 103.834625
iter 70 value 102.044234
iter 80 value 100.891671
iter 90 value 100.533661
iter 100 value 100.440812
final value 100.440812
stopped after 100 iterations
Fitting Repeat 3
# weights: 305
initial value 129.030288
iter 10 value 117.714242
iter 20 value 112.074281
iter 30 value 106.846360
iter 40 value 105.210047
iter 50 value 103.892018
iter 60 value 102.665832
iter 70 value 101.511656
iter 80 value 101.130755
iter 90 value 101.116340
iter 100 value 101.074947
final value 101.074947
stopped after 100 iterations
Fitting Repeat 4
# weights: 305
initial value 145.080401
iter 10 value 120.908329
iter 20 value 117.903666
iter 30 value 117.894522
iter 40 value 114.880375
iter 50 value 111.935099
iter 60 value 110.068169
iter 70 value 106.431930
iter 80 value 105.890765
iter 90 value 104.088840
iter 100 value 102.438971
final value 102.438971
stopped after 100 iterations
Fitting Repeat 5
# weights: 305
initial value 125.246071
iter 10 value 117.960938
iter 20 value 116.124458
iter 30 value 109.755488
iter 40 value 107.671631
iter 50 value 106.503666
iter 60 value 106.449073
iter 70 value 106.372965
iter 80 value 104.543534
iter 90 value 102.836683
iter 100 value 101.868407
final value 101.868407
stopped after 100 iterations
svmRadial
ranger
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls < cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
Setting levels: control = Positive, case = Negative
Setting direction: controls > cases
RUNIT TEST PROTOCOL -- Tue May 30 09:53:15 2023
***********************************************
Number of test functions: 7
Number of errors: 0
Number of failures: 0
1 Test Suite :
HPiP RUnit Tests - 7 test functions, 0 errors, 0 failures
Number of test functions: 7
Number of errors: 0
Number of failures: 0
Warning messages:
1: `repeats` has no meaning for this resampling method.
2: executing %dopar% sequentially: no parallel backend registered
>
>
>
>
> proc.time()
user system elapsed
51.206 1.728 63.794
HPiP.Rcheck/HPiP-Ex.timings
| name | user | system | elapsed | |
| FSmethod | 37.631 | 0.616 | 38.248 | |
| FreqInteractors | 0.302 | 0.020 | 0.322 | |
| calculateAAC | 0.052 | 0.000 | 0.052 | |
| calculateAutocor | 0.710 | 0.020 | 0.731 | |
| calculateCTDC | 0.099 | 0.004 | 0.103 | |
| calculateCTDD | 0.836 | 0.012 | 0.848 | |
| calculateCTDT | 0.275 | 0.016 | 0.291 | |
| calculateCTriad | 0.474 | 0.008 | 0.482 | |
| calculateDC | 0.127 | 0.004 | 0.131 | |
| calculateF | 0.404 | 0.008 | 0.412 | |
| calculateKSAAP | 0.14 | 0.00 | 0.14 | |
| calculateQD_Sm | 2.481 | 0.052 | 2.533 | |
| calculateTC | 2.382 | 0.048 | 2.430 | |
| calculateTC_Sm | 0.323 | 0.004 | 0.327 | |
| corr_plot | 37.545 | 0.540 | 38.084 | |
| enrichfindP | 0.429 | 0.048 | 14.626 | |
| enrichfind_hp | 0.049 | 0.008 | 1.374 | |
| enrichplot | 0.376 | 0.120 | 0.496 | |
| filter_missing_values | 0.000 | 0.001 | 0.002 | |
| getFASTA | 1.142 | 0.030 | 11.497 | |
| getHPI | 0.000 | 0.001 | 0.001 | |
| get_negativePPI | 0.000 | 0.003 | 0.004 | |
| get_positivePPI | 0.000 | 0.000 | 0.001 | |
| impute_missing_data | 0.002 | 0.001 | 0.003 | |
| plotPPI | 0.082 | 0.020 | 0.102 | |
| pred_ensembel | 17.985 | 0.603 | 16.220 | |
| var_imp | 40.284 | 0.640 | 40.923 | |